Presentation is loading. Please wait.

Presentation is loading. Please wait.

Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny.

Similar presentations


Presentation on theme: "Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny."— Presentation transcript:

1 Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny Novgorod J.-U.Grabow Inst. of Phys. Chem. and Electrochemistry, Leibniz University of Hannover A.Guarnieri Technical Faculty of Christian Albrecht University of Kiel Sub-Doppler and FTMW Spectroscopy of HCCCN Isotopologues 17.06.2013 MF06 Ohio H C CCN 15 N 13 C

2 Are rest molecular frequencies everywhere the same? How universal is our Universe in different parts? How small difference can we reveal from spectral measurements of different type molecular transitions?

3 N N H H H H H H H H H H H H N N 10 -4 eV  1.3 cm U(x) x double-well potential of the inversion vibrational mode of NH 3 NH 3 J,K=1,1 inv = 23694.495487(48)MHz 18 hf components, σ V =0.61m/s S.G. Kukolich, 1967, Phys.Rev. 156, 83 E=22.1 K E=23.3 K  inv / inv = 4.5  / 

4 HC 3 N hyperfine spectrum J F – J F Frequency(MHz) shift(km/s) σ V =2.8m/s 2 1 – 1 1 18198.37461(17) -35.54874(9) 2 1 – 1 2 18197.07688(17) -14.16804(7) 2 3 – 1 2 18196.31047(17) -1.54098(2) 2 2 – 1 1 18196.21694(17) 0.00000(0) 2 1 – 1 0 18195.13615(17) 17.80653(4) 2 2 – 1 2 18194.91922(17) 21.38070(6) HC3N J=1 – 0 data: de Zafra R.L., 1971 ApJ 170, 165 eQq N, C N data: R.L. DeLeon and J.S. Muenter, 1985, J.Chem.Phys. 82, 1702 E=0 K E=1.3 K E=2.6 K  rot / rot = 1.0  / 

5 Dark clouds (potential sites of Solar type star formation) – unique physical laboratories J.F. Alves, C.J. Lada & E.A. Lada 2001 Nature 409, 159 B68, optics Radiation life time: Transition Frequency τ(=A -1 ) CO J=1–0 115 GHz 162 days NH 3 (1,1) 24 GHz 69 days HC 3 N J=2–1 18 GHz 30 days HCN J=1–0 87 GHz 12 hours Very low temperature, Т k ~10K and density, n(H 2 )~10 4 …10 5 cm -3 Typical frequency of intermolecular collisions: n(H 2 )  10 -10 cm 3 /s~10 -6 …10 -5 s -1 or ~ 1 collision per several days

6 H 15 NC J=1-0 frequency: Laboratory measurements: 88 865.692(26)MHz Lovas F.J., 2004 (Saykally et al. 1976, Ohio Symposium #31) 88 865.715(40)MHz Pearson et al. 1976 88 865.709(45)MHz Maki et al. 2001 Radio astronomical measurements: 88 865.6964(26)МГц (9 dark clouds) 88 865.6954(44)МГц (23 dark clouds) Radio astronomical spectroscopy of H 15 NC Lapinov 2006 SPIE Proceedings 6580, 6858001

7 H 15 NC J=1-0 frequency: Laboratory measurements: 88 865.692(26)MHz Lovas F.J., 2004 (Saykally et al. 1976, Ohio Symposium #31) 88 865.715(40)MHz Pearson et al. 1976 88 865.709(45)MHz Maki et al. 2001 Radio astronomical measurements: 88 865.6964(26)МГц (9 dark clouds) 88 865.6954(44)МГц (23 dark clouds) H.Bechtel (MIT) molecular jet measurements: 88 865.6966(14)MHz 88 865.6958(8)MHz (Global B, D, H fit) Radio astronomical spectroscopy of H 15 NC Lapinov 2006 SPIE Proceedings 6580, 6858001

8 Searching for chameleon-like scalar fields with the ammonia method 2010, Astron.Astrophys., v.512, A44 & Astron.Astrophys., v.524, A32 S.A.Levshakov, P.Molaro, A.V.Lapinov, D.Reimers, C.Henkel, T.Sakai S.A.Levshakov, A.V.Lapinov, C.Henkel, P.Molaro, D.Reimers, M.G.Kozlov, I.I.Agafonova 32m MEDICINA (Bologna) Italy 100m EFFELSBERG (Bonn) Germany 45m NOBEYAMA (NRAO) Japan  rot / rot = 1.0  /   inv / inv = 4.5  /   /  =0.3(V rot -V inv )/c Olive K.A., Pospelov M., 2008, Phys. Rev. D., v.77, p.043524 Idea of spatial m e /m p variations:

9 NH 3 (1,1) and HC 3 N(2-1) measurements of L1512 V(HC 3 N) – V(NH 3 ) = 26.5  1.2 m/s

10 NH 3 (1,1) and HC 3 N(2-1) measurements of L1498 V(HC 3 N) – V(NH 3 ) = 27.3  1.6 m/s V(HC 3 N) – V(NH 3 ) = 24.7  1.5 m/s

11 Study of central core of L1512 (0,0): V(HC 3 N) – V(NH 3 ) = 26.5  1.2 m/s 10 points: V(HC 3 N) – V(NH 3 ) = 26.6  2.8 m/s

12 Examples of HCCCN Lamb-dip measurements

13

14 Conclusions If we assume that the shift of rotational transition of HC 3 N J=2–1 relative inversion transition of NH 3 (1,1) is ΔV=V rot –V inv =(27.7±3.8 stat ±2.8 sys ) m/s, than from MPIfRA-100m data we can suppose that Δμ/μ=(μ obs –μ lab )/μ lab =(2.6±0.4 stat ±0.3 sys )·10 -8. But now we know that the above shift is a combined error of a set of soft and hardware bugs. Taking into account NRO-45m measurements in HC 3 N J=5–4 and NH 3 (1,1) towards L1498 with V rot –V inv =–0.1±2.8 m/s, as well as recent Medicina-32m data in HC 3 N J=2–1 and NH 3 (1,1) towards L1498 and L1512 with V rot –V inv =–0.9±3.1 m/s и +0.4±3.1 m/s, it’s possible to conclude that for|ΔV|<3 m/s we have |Δµ/µ|<3·10 -9, what is three orders more precise in comparison with cosmological estimates of µ variation. Sometimes “high precision” is not equal to “high accuracy”:


Download ppt "Alexander V. Lapinov, G.Yu.Golubiatnikov, Inst. of Applied Physics of RAS, Nizhny Novgorod A.P.Velmuzhov Inst. of Metalloorganic Chemistry of RAS, Nizhny."

Similar presentations


Ads by Google