Download presentation
Presentation is loading. Please wait.
Published byAnthony Ellis Modified over 9 years ago
1
1 Stellar molecular jets trace by maser emission Hiroshi Imai (Kagoshima University) IAU Symposium 242: 14 March 2007, Alice Springs, Australia
2
2 Stellar molecular jets trace by maser emission Hiroshi Imai (Kagoshima University) Combination of collaborations with Philip Diamond, Wouter Vlemmings (Jodrell Bank Obs., UK) Mark Morris (UCLA, USA) Raghvendra Sahai (JPL/NASA, USA) Shuji Deguchi (Nobeyama Radio Obs., Japan) Jun-ichi Nakashima (ASIAA, Taiwan) Sun Kwok (Univ. Hong Kong, China) Kumiko Obara, Toshihiro Omodaka (Kagoshima Univ., Japan) Tetsuo Sasao (NAOJ, Japan) Combination of collaborations with Philip Diamond, Wouter Vlemmings (Jodrell Bank Obs., UK) Mark Morris (UCLA, USA) Raghvendra Sahai (JPL/NASA, USA) Shuji Deguchi (Nobeyama Radio Obs., Japan) Jun-ichi Nakashima (ASIAA, Taiwan) Sun Kwok (Univ. Hong Kong, China) Kumiko Obara, Toshihiro Omodaka (Kagoshima Univ., Japan) Tetsuo Sasao (NAOJ, Japan) IAU Symposium 242: 14 March 2007, Alice Springs, Australia
3
3 Transition from spherically symmetric to asymmetric mass loss flow When/how is a bipolar jet launched in the final stellar evolution? Egg Nebula ⓒ NASA Betelgeuse ⓒ NASA Hen2-90 (Sahai et al. 1998)
4
4 “Water fountains” in AGB/post-AGB phases Molecular rather than optical emission jets Expansion velocity V exp (H 2 O) >> V exp (OH 1612MHz ) (~30 km/s) Evolved stars difficulty in evolved star identification c.f identification with SPITZER/AKARI 1612 MHz OH maser with periodic flux variation Detection of SiO masers Molecular rather than optical emission jets Expansion velocity V exp (H 2 O) >> V exp (OH 1612MHz ) (~30 km/s) Evolved stars difficulty in evolved star identification c.f identification with SPITZER/AKARI 1612 MHz OH maser with periodic flux variation Detection of SiO masers W43A IRAS 16342-3814 IRAS 19134+2131 High velocity stellar H 2 O maser sources (Likkel et al. 1992) High velocity stellar H 2 O maser sources (Likkel et al. 1992)
5
5 10 water fountains identified to date W43A (Diamond et al. 1985; Imai et al. 2002, 2005; Vlemmings et al. 2006) IRAS 19134+2131 (Imai et al. 2004; 2007 in prep.) IRAS 16342-3814 (Sahai et al. 1999; Morris et al. 2003; Claussen et al. 2004) OH 12.8-0.9 (Boboltz & Marvel 2005) IRAS18286-0959 (Deguchi et al. 2007; Imai et al. in prep.) IRAS18460-0151 (Deguchi et al. 2007; Imai et al. in prep.) IRAS18596+0315 (Deacon et al. 2007) IRAS15445-5449 (Deacon et al. 2007) IRAS15544-5332 (Deacon et al. 2007) IRAS18043-2116 (Deacon et al. 2007) W43A (Diamond et al. 1985; Imai et al. 2002, 2005; Vlemmings et al. 2006) IRAS 19134+2131 (Imai et al. 2004; 2007 in prep.) IRAS 16342-3814 (Sahai et al. 1999; Morris et al. 2003; Claussen et al. 2004) OH 12.8-0.9 (Boboltz & Marvel 2005) IRAS18286-0959 (Deguchi et al. 2007; Imai et al. in prep.) IRAS18460-0151 (Deguchi et al. 2007; Imai et al. in prep.) IRAS18596+0315 (Deacon et al. 2007) IRAS15445-5449 (Deacon et al. 2007) IRAS15544-5332 (Deacon et al. 2007) IRAS18043-2116 (Deacon et al. 2007) Chapman’s talk Chapman’s talk
6
6 Recent topics of water fountains MHD jets! (Vlemmings’ talk) Lifetime and timing Equatorial flow? Ballistic corkscrew jets? Location and motion in the Galaxy Precursors of water fountain (e.g. WX Psc, IRC-10414) MHD jets! (Vlemmings’ talk) Lifetime and timing Equatorial flow? Ballistic corkscrew jets? Location and motion in the Galaxy Precursors of water fountain (e.g. WX Psc, IRC-10414)
7
7 Lifetime and timing
8
8 Dynamical age estimation H 2 O maser proper motions in W43A (Imai et al. 2002; Imai et al. 2005; Imai & Diamond in Prep.) H 2 O maser proper motions in W43A (Imai et al. 2002; Imai et al. 2005; Imai & Diamond in Prep.) Jet velocity =145 km/s, dynamical age ~50 yr
9
9 Dynamical ages (now) IRAS16342-3814: ~100 yr (Morris et al. 2004) OH12.8-0.9: ~70 yr (Boboltz & Marvel 2005) IRAS18286-0959: ~15 yr (Imai et al. in prep.) W43A: ~50 yr (Imai & Diamond in prep.) IRAS18460-0151: ~5 yr (Imai et al. in prep.) IRAS19134+2131: ~50 yr (Imai et al. in prep.) IRAS16342-3814: ~100 yr (Morris et al. 2004) OH12.8-0.9: ~70 yr (Boboltz & Marvel 2005) IRAS18286-0959: ~15 yr (Imai et al. in prep.) W43A: ~50 yr (Imai & Diamond in prep.) IRAS18460-0151: ~5 yr (Imai et al. in prep.) IRAS19134+2131: ~50 yr (Imai et al. in prep.) -23 - -10 km s -1 -121- -117 km s -1 IRAS 19134+2131 (Imai et al. in prep.) IRAS 19134+2131 (Imai et al. in prep.) ~Human lifetime
10
10 1612 MHz OH masers Imai et al. (2002)
11
11 1612 MHz OH masers OH maser shell (R~500 AU, V exp =9km/s) Periodic OH maser variation (P~360d, Herman & Habing 1985) OH maser shell (R~500 AU, V exp =9km/s) Periodic OH maser variation (P~360d, Herman & Habing 1985) 1612 MHz OH masers (Imai & Diamond in prep.)
12
12 How visible is W43A? SiO masers (Nakashima & Deguchi 2002; Imai et al. 2005) Dust envelope in 2.7 mm emission: R< 3000 AU Envelope dynamical age T~ 260 years (OH), 1600 years (dust) SiO masers (Nakashima & Deguchi 2002; Imai et al. 2005) Dust envelope in 2.7 mm emission: R< 3000 AU Envelope dynamical age T~ 260 years (OH), 1600 years (dust) SPITZER/GLIMPSE Image (Deguchi et al. 2007) SPITZER/GLIMPSE Image (Deguchi et al. 2007) 20000 AU at 2.6 kpc + H 2 O & OH masers 2.7 mm continuum Image (Imai et al.) 2.7 mm continuum Image (Imai et al.)
13
13 Transition to pre-planetary nebula (PPN) phase IRAS 19134+2131 (by R. Sahai) Visible in visual light Visible in mid-IR c.f. IRAS 16342-3814 (Sahai et al. 2001) W43A (Deguchi et al. 2007) c.f. OH12.8-0.9, IRAS18286-0959, IRAS18460-0151
14
14 Quenching water fountain within < 1000 years Gomez’s talk Photodissociation destroying H 2 O molecules Tip of jet achieves to the outer low-density region of a circumstellar envelope Photodissociation destroying H 2 O molecules Tip of jet achieves to the outer low-density region of a circumstellar envelope 5000 AU
15
15 Equatorial flows W43A IRAS 18286-0959 IRAS 18460-0151 W43A IRAS 18286-0959 IRAS 18460-0151
16
16 Wide opening angle biconical SiO maser flow (~15 km/s) | within 10 AU | H 2 O maser jet (Imai et al. 2005) (Imai et al. in prep.) Wide opening angle biconical SiO maser flow (~15 km/s) | within 10 AU | H 2 O maser jet (Imai et al. 2005) (Imai et al. in prep.) Where is a disk? SiO/H 2 O maser locations
17
17 Proper motion in the equatorial flow W43A (Imai & Diamond in prep) W43A (Imai & Diamond in prep) Flow velocity ~30 km/s
18
18 IRAS 18460-0151 (Deguchi et al. 2007) Fastest (~350 km s -1 ) and youngest (t~5 yr) water fountain! Equatorial flow (V exp ~30 km s -1 )? Fastest (~350 km s -1 ) and youngest (t~5 yr) water fountain! Equatorial flow (V exp ~30 km s -1 )?
19
19 IRAS 18286-0959 (Deguchi et al. 2007)
20
20 Ballistic corkscrew jets IRAS 16342-3814 W43A IRAS 19134+2131 IRAS 16342-3814 W43A IRAS 19134+2131
21
21 W43A in detail: Jet precession Precession period ~55 years Precession angle amplitude ~5° Precession period ~55 years Precession angle amplitude ~5° Imai et al. 2005
22
22 Corkscrew jet? Bow shock front? W43A (Imai & Diamond in prep) Proper motions with a systemic velocity vector subtracted
23
23 Corkscrew jet? Bow shock front? (VLA) 500 AU at 8 kpc (VLBA) Imai et al. (2004) Imai et al. (2007) IRAS19134+2131
24
24 Corkscrew jet! IRAS16342-3814 (Sahai et al. 2005) L p image with Keck What happens in the H 2 O maser proper motions? L p (red), K p (green), HST (blue) image IRAS16342-3814 (Sahai et al. 2005) L p image with Keck What happens in the H 2 O maser proper motions? L p (red), K p (green), HST (blue) image
25
25 Location and motion in the Milky Way Galaxy IRAS19134+2131
26
26 Maser motion with respect to a position-reference QSO - Exploring the roots of water fountain - Galactic rotation H 2 O masers in IRAS 19134+2131 (Imai et al. 2007)
27
27 Annual parallax and Galactic rotation
28
Location and motion in the Galaxy Annual parallax distance = 8.0 +0.9 -0.7 kpc Location: (R, θ, z)=(7.4 +0.4 -0.3 kpc, 62±5 deg, 650 +70 -60 pc) 3D velocity (V R, V θ, Vz) =(3 +53 -46, 125 +20 -28, 8 +48 -39 )[km/s] Ⓒ Kagaya
29
29 Location and velocity in the Galaxy Progenitors of bipolar PNe may be higher mass stars located near the Galactic plane (Manchado 2004). Single intermediate-mass evolved star can create both a collimated jet and an equatorial flow (not accretion disk). (Blackman et al. 2001; S. Miyaji in private communication) Travel time from the Galactic plane 1.1-7.7 x 10 7 years M * < 5-5.8 M ◉
30
30 Summary Magneto-hydrodynamical Corkscrew/precessing jet V> 100 km s -1, T~100 years Magneto-hydrodynamical Corkscrew/precessing jet V> 100 km s -1, T~100 years Equatorial flow V~ 30 km s -1 Evolving from AGB envelope? Equatorial flow V~ 30 km s -1 Evolving from AGB envelope? M * < 5 M sun single AGB/post-AGB star (or binary <10 AU?) M * < 5 M sun single AGB/post-AGB star (or binary <10 AU?) Only 10 water fountains in the whole Galaxy? Only 10 water fountains in the whole Galaxy? Ⓒ NSF
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.