Download presentation
Presentation is loading. Please wait.
0
Beam Energy Programs in HIC Part I: Past
Christoph Blume University of Frankfurt
1
Christoph Blume, Dubna Aug. 2012
Outline: Experiments Beam energy scan programs with heavy ions Part I: Past AGS: e.g. E895 SPS: NA49 (NA45, NA57) Part II: Present RHIC: STAR, PHENIX SPS: NA61 Part III: Future NICA: MPD FAIR: CBM Christoph Blume, Dubna Aug. 2012
2
Christoph Blume, Dubna Aug. 2012
Outline: Physics Scan of the QCD phase diagram Search for the onset of deconfinement Locate the phase boundary to QGP Order of the phase transition (cross over ↔ 1st order) Search for the QCD critical point Systematic scan of relevant area in phase diagram Search for new QCD phases and exotica E.g. Quarkyonic matter Christoph Blume, Dubna Aug. 2012
3
Christoph Blume, Dubna Aug. 2012
The QCD Phase Diagram Topic of this lecture Part of phase diagram with μB > 0 μB = 0: LHC physics Questions to experiments 1) Is it possible to locate the onset of deconfinement ? 2) Is there any evidence for a 1st order phase transition ? 3) Can one find any indication for a possible critical point ? RHIC SPS FAIR NICA Christoph Blume, Dubna Aug. 2012
4
Analogy: Phase Diagram of Water
Cross over Critical point 1st order phase boundary Christoph Blume, Dubna Aug. 2012
5
Christoph Blume, Dubna Aug. 2012
Beam Energy Scan Control parameter: √sNN Allows to scan different regions of phase diagram System freezes out at different positions along freeze-out curve Trajectory might cross critical area Variation of system size Program of H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, and X. Zhu, JPG31, S929 (2005) Y.B. Ivanov, V.N. Russkikh, V.D. Tonnev, PRC73, (2006) 3-fluid hydro Christoph Blume, Dubna Aug. 2012
6
Christoph Blume, Dubna Aug. 2012
Beam Energy Scan Region of high baryon density RHIC SPS FAIR / NICA (/ AGS) RHIC sNN = GeV SPS sNN = 6–17 GeV AGS sNN = 2.7–5 GeV Christoph Blume, Dubna Aug. 2012
7
Alternating Gradient Synchrotron
Christoph Blume, Dubna Aug. 2012
8
HIC Experiments at the AGS
Beam Technology Observables E802 Si Single arm magnetic spectrometer Spectra (, p, K), HBT E810 TPCs in magnetic field Strangeness (K0s, ) E814 Magnetic spectrometer + calorimeters Spectra (p) + Et E859 E nd level PID trigger Strangeness () E866 Au 2 magnetic spectrometers (TPC, TOF) Strangeness (Kaons) E877 Upgrade of E814 E891 Upgrade of E810 E895 EOS TPC E896 Drift chamber + neutron detector H0 Di-baryon, E910 EOS TPC + TOF p+A Collisions E917 Upgrade of E866 Christoph Blume, Dubna Aug. 2012
9
Christoph Blume, Dubna Aug. 2012
The E895 Experiment Time Projection Chamber EOS-TPC Beam energy scan Au+Au 2.4 < √sNN < 4.8 GeV 2 < Elab < 10.8 A GeV Observables π±, p, K0s, Λ, Ξ- Spectra, HBT, directed and elliptic flow Christoph Blume, Dubna Aug. 2012
10
CERN Accelerator Complex
Christoph Blume, Dubna Aug. 2012
11
CERN Accelerator Complex
North Area SPS LHC West Area PS Christoph Blume, Dubna Aug. 2012
12
HIC Experiments at the SPS
Beam Technology Observables NA34 16O, 32S Muon spectrometer + calorimeter Di-leptons, p, , K, NA35 Streamer chamber -, K0s, , HBT NA36 TPC K0s, NA38 Di-muon spectrometer (NA10) Di-leptons, J/ WA80/WA93 Calorimeter + Plastic Ball , 0, WA85 Mag. spectrometer with MWPCs K0s, , WA94 WA85 + Si strip detectors NA44 16O, 32S, 208Pb Single arm magnetic spectrometer , K, p NA45 Cherenkov + TPC Di-leptons (low mass) NA49 208Pb Large volume TPCs , K, p, K0s, , , , ... NA50 NA38 upgrade NA52 Beamline spectrometer Strangelets WA97 Mag. spectrometer with Si tracker h-, K0s, , , WA98 Pb-glass calorimeter + mag. spectrom. NA57 WA97 upgrade NA60 114In NA50 + Si vertex tracker Christoph Blume, Dubna Aug. 2012
13
Beam Energy Scan at the SPS
Pb+Pb: 6.3 < √sNN < 17.3 GeV Christoph Blume, Dubna Aug. 2012
14
Christoph Blume, Dubna Aug. 2012
The NA49 Experiment Christoph Blume, Dubna Aug. 2012
15
Christoph Blume, Dubna Aug. 2012
The NA49 Experiment Christoph Blume, Dubna Aug. 2012
16
Christoph Blume, Dubna Aug. 2012
The NA45 Experiment Christoph Blume, Dubna Aug. 2012
17
Christoph Blume, Dubna Aug. 2012
The NA57 Experiment Christoph Blume, Dubna Aug. 2012
18
Baryon-Number Distributions
yP yT y0 y’T y’p Lower energies: Higher energies: Christoph Blume, Dubna Aug. 2012
19
Christoph Blume, Dubna Aug. 2012
How to Measure Them Net-proton distributions: Protons - Antiprotons - = Other contributions (neutrons, hyperons) usually ignored (difficult to measure) Christoph Blume, Dubna Aug. 2012
20
Energy Dependence of Net-Protons
NA49 preliminary BRAHMS: PRL93, (2004) Christoph Blume, Dubna Aug. 2012
21
Energy Dependence of y
RHIC (sNN = 200 GeV): E = 25.7 ± 2.1 TeV E/Nucleon = 72.0 ± 6.0 GeV Rapidity shift: Energy loss: Christoph Blume, Dubna Aug. 2012
22
Inelastic Energy per NN Collision
Central data Energy of single net-baryon: Total inelastic energy per NN collision: Christoph Blume, Dubna Aug. 2012
23
Inelasticity of Heavy Ion Collisions
Central data p+p Inelasticity: ⇒ ≈ 70% of available energy is transformed into particle production and expansion of fireball (p+p ≈ 50%) Christoph Blume, Dubna Aug. 2012
24
Rapidity Distributions of Baryons
Central Pb+Pb, 158A GeV dn/dy (a.u.) y Net-protons: 3 valence Quarks (uud ) Omegas: 3 produced Quarks (sss ) Net s: 1 valence (d ) + 2 produced Quarks (ss ) Net s: 2 valence (ud ) + 1 produced Quark (s ) Christoph Blume, Dubna Aug. 2012
25
Antibaryon/Baryon Ratios
√sNN dependence gets reduced with increasing strangeness content But even Ω-/Ω+ ratio not energy independent S = -3 S = -2 S = -1 S = 0 PRC78, (2008) Christoph Blume, Dubna Aug. 2012
26
Christoph Blume, Dubna Aug. 2012
Particle Production Particle yields Lots of data on lighter particles (π, K, Λ) for central collisions (system size less well covered) Data on heavier particles (φ, Ξ, Ω) still relatively scarce Different energy dependences Steeper rise at low energies for K+ and Λ Interplay between net-baryon density and strangeness production AGS NA49 BRAHMS Christoph Blume, Dubna Aug. 2012
27
Major Strangeness Carriers: K and Λ
Strangeness Conservation = Isospin Symmetry K0 (ds) K+ (us) K- (us) (uds) >> If baryon density is high Christoph Blume, Dubna Aug. 2012
28
Relative Strangeness Production
Maximum around √sNN = 7-8 GeV Christoph Blume, Dubna Aug. 2012
29
Particle Production: Hyperons
/ − -/ +/ = 1.5 (+ + -) |y| < 0.4 |y| < 0.5 Christoph Blume, Dubna Aug. 2012
30
Particle Production: K/π Ratios
Pronouned maximum for K+/π+ ratio (aka “The Horn”) Not described by transport models Sharper than early statistical model predictions Proposed as signature for the onset of deconfinement M. Gaździcki and M.I. Gorenstein, APPB30, 2705 (1999) Christoph Blume, Dubna Aug. 2012
31
Chemical Freeze-Out Curve
Provides relation between T and μB Christoph Blume, Dubna Aug. 2012
32
Energy Dependence of T and B
A. Andronic et al, NPA772 (2006), 167 Christoph Blume, Dubna Aug. 2012
33
Particle Production: Stat. Model
Latest version of stat. model T(√sNN) and μB(√sNN) parameterized T and μB connected via freeze-out curve Better fit after introduction of additional high mass resonances (Hagedorn-res.) ⇒ Increase of pion yield Decrease of μB ⇒ maximum also in Λ/π A. Andronic et al., PLB673, 142 (2009) Christoph Blume, Dubna Aug. 2012
34
Strangeness in Heavy Ion Physics
Strangeness enhancement as a QGP signature J. Rafelski and B. Müller, PRL48, (1982) P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986) Strangeness has to be produced (no s-Quarks in nucleons) Thresholds are high in hadronic reactions E.g..: N + N N + K+ + (Ethres 700 MeV) Fast equilibration in a QGP via partonic processes E.g. gluon-fusion ⇒ Enhancement of strange particle production in A+A relative to p+p expected (in particular multi-strange particles) Christoph Blume, Dubna Aug. 2012
35
Strangeness Enhancement
√sNN (GeV) Contrary to naive expectation Same behavior for multi-strange particles? More data needed Christoph Blume, Dubna Aug. 2012
36
Christoph Blume, Dubna Aug. 2012
QGP Signature ? Is it a dominantly partonic effect or can hadronic processes lead to the same fast equilibration? Multi-meson fusion processes C. Greiner and S. Leupold, J. Phys. G 27, L95 (2001) Dynamic equilibration at the phase boundary? T-μB freeze-out curve follows phase boundaries (QGP or quarkyonic matter) P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys. Lett. B 596, 61 (2004) Hadronization generally a statistical phenomenon? U. Heinz, Nucl. Phys. A 638, 357c (1998), R. Stock, Phys. Lett. B 456, 277 (1999) Christoph Blume, Dubna Aug. 2012
37
Radial Expansion and mt-Spectra
1/mT dN/dmT mT 1/mT dN/dmT No radial flow: exponential spectrum (p+p collisions) With radial flow: add. boost by expansion (vT) ⇒ blue shifted spectrum Christoph Blume, Dubna Aug. 2012
38
mt-Spectra: Charged Kaons
Sudden change in the Kaon slope parameters (aka “The Step”) Evolution of radial flow changes around √sNN = 7-8 GeV Difficult to model in hadronic transport models Indication for a change of Equation of State (EOS) ? Christoph Blume, Dubna Aug. 2012
39
Energy Dependence of 〈mT〉
NA49: PRC77, (2008) Christoph Blume, Dubna Aug. 2012
40
Christoph Blume, Dubna Aug. 2012
The QCD Phase Diagram K. Rajagopal, CPOD Conference 09 Christoph Blume, Dubna Aug. 2012
41
Critical Point Predictions
Lattice QCD calculation at finite μB Z. Fodor and S. Katz JHEP 0404, 050 (2004) But current predictions scatter quite a lot The CP might even not exist at all ... P. de Forcrand and O. Philipsen, JHEP01, 077 (2007) M. Stephanov, CPOD conference 09 Christoph Blume, Dubna Aug. 2012
42
Critical Point Predictions
Larger critical area possible Y. Hatta and T. Ikeda, PRD67, (2003) Focusing effect Proximity of critical point might influence isentropic trajectories M. Askawa et al., PRL101, (2008) Christoph Blume, Dubna Aug. 2012
43
Critical Point Observables
Critical opalescence Correlation lengths and susceptibilities diverge Heavy ion reactions System size limited ⇒ critical region Correlation length ξ ≈ radius of system Enhanced fluctuations Multiplicity Average pt Particle ratios Conserved quantities Strangeness S Baryon number B Charge Q Higher moments more sensitive M. Cheng et al., PRD79, (2009) μB = 0 Christoph Blume, Dubna Aug. 2012
44
Christoph Blume, Dubna Aug. 2012
Fluctuations Probe the medium response (susceptibilities) Study of hadronization properties Might be sensitive to QGP phase Hadron gas reacts differently than QGP Different number of degrees of freedom Nature of the phase transition Order of the transition (cross over ⇔ 1st order) Existence of critical point ⇒ sudden increase of fluctuations Christoph Blume, Dubna Aug. 2012
45
Christoph Blume, Dubna Aug. 2012
Fluctuations Charged multiplicity n Extensive quantity tight centrality selection (1%) to reduce volume fluctuations Scaled variance Energy dependence of Data narrower than Poisson ( < 1) Trend reproduced by UrQMD Pb+Pb, 158A GeV 1 < y < ybeam Christoph Blume, Dubna Aug. 2012
46
Comparison to CP Expectations
Average pt fluctuations Quantified by Φpt Multiplicity fluctuations Quantified by scaled variance No √sNN dependence seen Critical point expectation central Pb+Pb K. Grebieszkow, SQM11 B from stat. model fit: F. Becattini et al., PRC73, (2006) Position of critical point: Z. Fodor and S. Katz JHEP 0404, 050 (2004) Amplitude of fluct. : M. Stephanov et al. PRD60, (1999) Width of critical region: Y. Hatta and T. Ikeda, PRD67, (2003) NA49, PRC79, (2009) Christoph Blume, Dubna Aug. 2012
47
Particle Ratio Fluctuations
Examples: K/π, p/π, K/p Dynamical fluctuations quantified relative to mixed events reference S/B fluctuation as QGP signal V. Koch, A. Majumder, and J. Randrup, PRL95, (2005) T < Tc: S and B can be unrelated (Kaons: S = -1, B = 0) T > Tc: S and B are correlated (s-Quark: S = -1, B = 1/3) Experimentally: K/p fluctuations Christoph Blume, Dubna Aug. 2012
48
Particle Ratio Fluctuations
Comparison NA49 ↔ STAR Good agreement for p/π Deviations for K/π + K/p at lowest √sNN Likely due to different acceptances: K/π NA49, PRC83, (2011) NA49, PRC79, (2009) STAR, PRL103, (2009) p/π T. Tarnowsky, SQM11 J. Tian, SQM11 T. Schuster, QM11 K/p Christoph Blume, Dubna Aug. 2012
49
Christoph Blume, Dubna Aug. 2012
Summary Part I Beam energy scans at AGS and SPS Produced already a substantial amount of data Baseline for ongoing and future programs Main observations Strong variation of net-baryon density ⇒ change of μB Maximum of relative strangeness production around √sNN = 7-8 GeV Sharp maximum in K+/π+ ratio. Interpretation? Evolution of radial flow changes around √sNN = 7-8 GeV No evidence for critical point yet (first attempts) Christoph Blume, Dubna Aug. 2012
50
Christoph Blume, Dubna Aug. 2012
51
Center-of-Mass Energy
Center-of-mass energy in nucleon-nucleon system: One particle in rest (fixed target): Example: p+p at the SPS (450 GeV beam energy): ⇒ Fixed target: √s = 29.1 GeV ⇒ Collider: √s = 900 GeV Christoph Blume, Dubna Aug. 2012
52
Christoph Blume, Dubna Aug. 2012
Luminosity L Na(b) = number of particles per bunch j = number of bunches v = velocity of the bunches u = circumference of collider A = beam cross section at collision point Christoph Blume, Dubna Aug. 2012
53
Time Projection Chamber: ALICE
Field cage Readout chamber E-Field 510 cm HV electrode (100 kV) Volume: 88 m3 Drifttime 93 μs #channels: Christoph Blume, Dubna Aug. 2012
54
Christoph Blume, Dubna Aug. 2012
ALICE-TPC Christoph Blume, Dubna Aug. 2012
55
Christoph Blume, Dubna Aug. 2012
TPC Readout Christoph Blume, Dubna Aug. 2012
56
Specific Energy Loss dE/dx
Christoph Blume, Dubna Aug. 2012
57
Christoph Blume, Dubna Aug. 2012
Bethe-Bloch Equation Christoph Blume, Dubna Aug. 2012
58
Christoph Blume, Dubna Aug. 2012
dE/dx-Measurement Christoph Blume, Dubna Aug. 2012
59
Christoph Blume, Dubna Aug. 2012
Weak Decay Topologies V0 Topology (K0s, Λ): Ξ- (Cascade) Ω- Topology: Christoph Blume, Dubna Aug. 2012
60
Strangeness Production in π+p
- K0 p + Associated production: Christoph Blume, Dubna Aug. 2012
61
Reconstruction via Decay Topology
NA49 NA57 NA57 Christoph Blume, Dubna Aug. 2012
62
Armenteros-Podolanski Plot
Christoph Blume, Dubna Aug. 2012
63
Invariant Mass Spectra (K0s, -, - )
Entries minv(+,-) (GeV/c2) Entries - K0s Christoph Blume, Dubna Aug. 2012
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.