Presentation is loading. Please wait.

Presentation is loading. Please wait.

Christoph Blume, Dubna Aug. 2012

Similar presentations


Presentation on theme: "Christoph Blume, Dubna Aug. 2012"— Presentation transcript:

0 Beam Energy Programs in HIC Part I: Past
Christoph Blume University of Frankfurt

1 Christoph Blume, Dubna Aug. 2012
Outline: Experiments Beam energy scan programs with heavy ions Part I: Past AGS: e.g. E895 SPS: NA49 (NA45, NA57) Part II: Present RHIC: STAR, PHENIX SPS: NA61 Part III: Future NICA: MPD FAIR: CBM Christoph Blume, Dubna Aug. 2012

2 Christoph Blume, Dubna Aug. 2012
Outline: Physics Scan of the QCD phase diagram Search for the onset of deconfinement Locate the phase boundary to QGP Order of the phase transition (cross over ↔ 1st order) Search for the QCD critical point Systematic scan of relevant area in phase diagram Search for new QCD phases and exotica E.g. Quarkyonic matter Christoph Blume, Dubna Aug. 2012

3 Christoph Blume, Dubna Aug. 2012
The QCD Phase Diagram Topic of this lecture Part of phase diagram with μB > 0 μB = 0: LHC physics Questions to experiments 1) Is it possible to locate the onset of deconfinement ? 2) Is there any evidence for a 1st order phase transition ? 3) Can one find any indication for a possible critical point ? RHIC SPS FAIR NICA Christoph Blume, Dubna Aug. 2012

4 Analogy: Phase Diagram of Water
Cross over Critical point 1st order phase boundary Christoph Blume, Dubna Aug. 2012

5 Christoph Blume, Dubna Aug. 2012
Beam Energy Scan Control parameter: √sNN Allows to scan different regions of phase diagram System freezes out at different positions along freeze-out curve Trajectory might cross critical area Variation of system size Program of H. Stöcker, E.L. Bratkovskaya, M. Bleicher, S. Soff, and X. Zhu, JPG31, S929 (2005) Y.B. Ivanov, V.N. Russkikh, V.D. Tonnev, PRC73, (2006) 3-fluid hydro Christoph Blume, Dubna Aug. 2012

6 Christoph Blume, Dubna Aug. 2012
Beam Energy Scan Region of high baryon density RHIC SPS FAIR / NICA (/ AGS) RHIC sNN = GeV SPS sNN = 6–17 GeV AGS sNN = 2.7–5 GeV Christoph Blume, Dubna Aug. 2012

7 Alternating Gradient Synchrotron
Christoph Blume, Dubna Aug. 2012

8 HIC Experiments at the AGS
Beam Technology Observables E802 Si Single arm magnetic spectrometer Spectra (, p, K), HBT E810 TPCs in magnetic field Strangeness (K0s, ) E814 Magnetic spectrometer + calorimeters Spectra (p) + Et E859 E nd level PID trigger Strangeness () E866 Au 2 magnetic spectrometers (TPC, TOF) Strangeness (Kaons) E877 Upgrade of E814 E891 Upgrade of E810 E895 EOS TPC E896 Drift chamber + neutron detector H0 Di-baryon,  E910 EOS TPC + TOF p+A Collisions E917 Upgrade of E866 Christoph Blume, Dubna Aug. 2012

9 Christoph Blume, Dubna Aug. 2012
The E895 Experiment Time Projection Chamber EOS-TPC Beam energy scan Au+Au 2.4 < √sNN < 4.8 GeV 2 < Elab < 10.8 A GeV Observables π±, p, K0s, Λ, Ξ- Spectra, HBT, directed and elliptic flow Christoph Blume, Dubna Aug. 2012

10 CERN Accelerator Complex
Christoph Blume, Dubna Aug. 2012

11 CERN Accelerator Complex
North Area SPS LHC West Area PS Christoph Blume, Dubna Aug. 2012

12 HIC Experiments at the SPS
Beam Technology Observables NA34 16O, 32S Muon spectrometer + calorimeter Di-leptons, p, , K,  NA35 Streamer chamber -, K0s, , HBT NA36 TPC K0s,  NA38 Di-muon spectrometer (NA10) Di-leptons, J/ WA80/WA93 Calorimeter + Plastic Ball , 0,  WA85 Mag. spectrometer with MWPCs K0s, ,  WA94 WA85 + Si strip detectors NA44 16O, 32S, 208Pb Single arm magnetic spectrometer , K, p NA45 Cherenkov + TPC Di-leptons (low mass) NA49 208Pb Large volume TPCs , K, p, K0s, , , , ... NA50 NA38 upgrade NA52 Beamline spectrometer Strangelets WA97 Mag. spectrometer with Si tracker h-, K0s, , ,  WA98 Pb-glass calorimeter + mag. spectrom. NA57 WA97 upgrade NA60 114In NA50 + Si vertex tracker Christoph Blume, Dubna Aug. 2012

13 Beam Energy Scan at the SPS
Pb+Pb: 6.3 < √sNN < 17.3 GeV Christoph Blume, Dubna Aug. 2012

14 Christoph Blume, Dubna Aug. 2012
The NA49 Experiment Christoph Blume, Dubna Aug. 2012

15 Christoph Blume, Dubna Aug. 2012
The NA49 Experiment Christoph Blume, Dubna Aug. 2012

16 Christoph Blume, Dubna Aug. 2012
The NA45 Experiment Christoph Blume, Dubna Aug. 2012

17 Christoph Blume, Dubna Aug. 2012
The NA57 Experiment Christoph Blume, Dubna Aug. 2012

18 Baryon-Number Distributions
yP yT y0 y’T y’p Lower energies: Higher energies: Christoph Blume, Dubna Aug. 2012

19 Christoph Blume, Dubna Aug. 2012
How to Measure Them Net-proton distributions: Protons - Antiprotons - = Other contributions (neutrons, hyperons) usually ignored (difficult to measure) Christoph Blume, Dubna Aug. 2012

20 Energy Dependence of Net-Protons
NA49 preliminary BRAHMS: PRL93, (2004) Christoph Blume, Dubna Aug. 2012

21 Energy Dependence of y
RHIC (sNN = 200 GeV): E = 25.7 ± 2.1 TeV E/Nucleon = 72.0 ± 6.0 GeV Rapidity shift: Energy loss: Christoph Blume, Dubna Aug. 2012

22 Inelastic Energy per NN Collision
Central data Energy of single net-baryon: Total inelastic energy per NN collision: Christoph Blume, Dubna Aug. 2012

23 Inelasticity of Heavy Ion Collisions
Central data  p+p Inelasticity: ⇒ ≈ 70% of available energy is transformed into particle production and expansion of fireball (p+p ≈ 50%) Christoph Blume, Dubna Aug. 2012

24 Rapidity Distributions of Baryons
Central Pb+Pb, 158A GeV dn/dy (a.u.) y Net-protons: 3 valence Quarks (uud ) Omegas: 3 produced Quarks (sss ) Net s: 1 valence (d ) + 2 produced Quarks (ss ) Net s: 2 valence (ud ) + 1 produced Quark (s ) Christoph Blume, Dubna Aug. 2012

25 Antibaryon/Baryon Ratios
√sNN dependence gets reduced with increasing strangeness content But even Ω-/Ω+ ratio not energy independent S = -3 S = -2 S = -1 S = 0 PRC78, (2008) Christoph Blume, Dubna Aug. 2012

26 Christoph Blume, Dubna Aug. 2012
Particle Production Particle yields Lots of data on lighter particles (π, K, Λ) for central collisions (system size less well covered) Data on heavier particles (φ, Ξ, Ω) still relatively scarce Different energy dependences Steeper rise at low energies for K+ and Λ Interplay between net-baryon density and strangeness production AGS NA49 BRAHMS Christoph Blume, Dubna Aug. 2012

27 Major Strangeness Carriers: K and Λ
Strangeness Conservation = Isospin Symmetry K0 (ds) K+ (us) K- (us)  (uds) >> If baryon density is high Christoph Blume, Dubna Aug. 2012

28 Relative Strangeness Production
Maximum around √sNN = 7-8 GeV Christoph Blume, Dubna Aug. 2012

29 Particle Production: Hyperons
/ -/ +/  = 1.5 (+ + -) |y| < 0.4 |y| < 0.5 Christoph Blume, Dubna Aug. 2012

30 Particle Production: K/π Ratios
Pronouned maximum for K+/π+ ratio (aka “The Horn”) Not described by transport models Sharper than early statistical model predictions Proposed as signature for the onset of deconfinement M. Gaździcki and M.I. Gorenstein, APPB30, 2705 (1999) Christoph Blume, Dubna Aug. 2012

31 Chemical Freeze-Out Curve
Provides relation between T and μB Christoph Blume, Dubna Aug. 2012

32 Energy Dependence of T and B
A. Andronic et al, NPA772 (2006), 167 Christoph Blume, Dubna Aug. 2012

33 Particle Production: Stat. Model
Latest version of stat. model T(√sNN) and μB(√sNN) parameterized T and μB connected via freeze-out curve Better fit after introduction of additional high mass resonances (Hagedorn-res.) ⇒ Increase of pion yield Decrease of μB ⇒ maximum also in Λ/π A. Andronic et al., PLB673, 142 (2009) Christoph Blume, Dubna Aug. 2012

34 Strangeness in Heavy Ion Physics
Strangeness enhancement as a QGP signature J. Rafelski and B. Müller, PRL48, (1982) P. Koch, B. Müller, and J. Rafelski, Phys. Rep. 142, 167 (1986) Strangeness has to be produced (no s-Quarks in nucleons) Thresholds are high in hadronic reactions E.g..: N + N  N + K+ +  (Ethres  700 MeV) Fast equilibration in a QGP via partonic processes E.g. gluon-fusion ⇒ Enhancement of strange particle production in A+A relative to p+p expected (in particular multi-strange particles) Christoph Blume, Dubna Aug. 2012

35 Strangeness Enhancement
√sNN (GeV) Contrary to naive expectation Same behavior for multi-strange particles? More data needed Christoph Blume, Dubna Aug. 2012

36 Christoph Blume, Dubna Aug. 2012
QGP Signature ? Is it a dominantly partonic effect or can hadronic processes lead to the same fast equilibration? Multi-meson fusion processes C. Greiner and S. Leupold, J. Phys. G 27, L95 (2001) Dynamic equilibration at the phase boundary? T-μB freeze-out curve follows phase boundaries (QGP or quarkyonic matter) P. Braun-Munzinger, J. Stachel, and C. Wetterich, Phys. Lett. B 596, 61 (2004) Hadronization generally a statistical phenomenon? U. Heinz, Nucl. Phys. A 638, 357c (1998), R. Stock, Phys. Lett. B 456, 277 (1999) Christoph Blume, Dubna Aug. 2012

37 Radial Expansion and mt-Spectra
1/mT dN/dmT mT 1/mT dN/dmT No radial flow: exponential spectrum (p+p collisions) With radial flow: add. boost by expansion (vT) ⇒ blue shifted spectrum Christoph Blume, Dubna Aug. 2012

38 mt-Spectra: Charged Kaons
Sudden change in the Kaon slope parameters (aka “The Step”) Evolution of radial flow changes around √sNN = 7-8 GeV Difficult to model in hadronic transport models Indication for a change of Equation of State (EOS) ? Christoph Blume, Dubna Aug. 2012

39 Energy Dependence of 〈mT〉
NA49: PRC77, (2008) Christoph Blume, Dubna Aug. 2012

40 Christoph Blume, Dubna Aug. 2012
The QCD Phase Diagram K. Rajagopal, CPOD Conference 09 Christoph Blume, Dubna Aug. 2012

41 Critical Point Predictions
Lattice QCD calculation at finite μB Z. Fodor and S. Katz JHEP 0404, 050 (2004) But current predictions scatter quite a lot The CP might even not exist at all ... P. de Forcrand and O. Philipsen, JHEP01, 077 (2007) M. Stephanov, CPOD conference 09 Christoph Blume, Dubna Aug. 2012

42 Critical Point Predictions
Larger critical area possible Y. Hatta and T. Ikeda, PRD67, (2003) Focusing effect Proximity of critical point might influence isentropic trajectories M. Askawa et al., PRL101, (2008) Christoph Blume, Dubna Aug. 2012

43 Critical Point Observables
Critical opalescence Correlation lengths and susceptibilities diverge Heavy ion reactions System size limited ⇒ critical region Correlation length ξ ≈ radius of system Enhanced fluctuations Multiplicity Average pt Particle ratios Conserved quantities Strangeness S Baryon number B Charge Q Higher moments more sensitive M. Cheng et al., PRD79, (2009) μB = 0 Christoph Blume, Dubna Aug. 2012

44 Christoph Blume, Dubna Aug. 2012
Fluctuations Probe the medium response (susceptibilities) Study of hadronization properties Might be sensitive to QGP phase Hadron gas reacts differently than QGP Different number of degrees of freedom Nature of the phase transition Order of the transition (cross over ⇔ 1st order) Existence of critical point ⇒ sudden increase of fluctuations Christoph Blume, Dubna Aug. 2012

45 Christoph Blume, Dubna Aug. 2012
Fluctuations Charged multiplicity n Extensive quantity tight centrality selection (1%) to reduce volume fluctuations Scaled variance  Energy dependence of  Data narrower than Poisson ( < 1) Trend reproduced by UrQMD Pb+Pb, 158A GeV 1 < y < ybeam Christoph Blume, Dubna Aug. 2012

46 Comparison to CP Expectations
Average pt fluctuations Quantified by Φpt Multiplicity fluctuations Quantified by scaled variance No √sNN dependence seen Critical point expectation central Pb+Pb K. Grebieszkow, SQM11 B from stat. model fit: F. Becattini et al., PRC73, (2006) Position of critical point: Z. Fodor and S. Katz JHEP 0404, 050 (2004) Amplitude of fluct. : M. Stephanov et al. PRD60, (1999) Width of critical region: Y. Hatta and T. Ikeda, PRD67, (2003) NA49, PRC79, (2009) Christoph Blume, Dubna Aug. 2012

47 Particle Ratio Fluctuations
Examples: K/π, p/π, K/p Dynamical fluctuations quantified relative to mixed events reference S/B fluctuation as QGP signal V. Koch, A. Majumder, and J. Randrup, PRL95, (2005) T < Tc: S and B can be unrelated (Kaons: S = -1, B = 0) T > Tc: S and B are correlated (s-Quark: S = -1, B = 1/3) Experimentally: K/p fluctuations Christoph Blume, Dubna Aug. 2012

48 Particle Ratio Fluctuations
Comparison NA49 ↔ STAR Good agreement for p/π Deviations for K/π + K/p at lowest √sNN Likely due to different acceptances: K/π NA49, PRC83, (2011) NA49, PRC79, (2009) STAR, PRL103, (2009) p/π T. Tarnowsky, SQM11 J. Tian, SQM11 T. Schuster, QM11 K/p Christoph Blume, Dubna Aug. 2012

49 Christoph Blume, Dubna Aug. 2012
Summary Part I Beam energy scans at AGS and SPS Produced already a substantial amount of data Baseline for ongoing and future programs Main observations Strong variation of net-baryon density ⇒ change of μB Maximum of relative strangeness production around √sNN = 7-8 GeV Sharp maximum in K+/π+ ratio. Interpretation? Evolution of radial flow changes around √sNN = 7-8 GeV No evidence for critical point yet (first attempts) Christoph Blume, Dubna Aug. 2012

50 Christoph Blume, Dubna Aug. 2012

51 Center-of-Mass Energy
Center-of-mass energy in nucleon-nucleon system: One particle in rest (fixed target): Example: p+p at the SPS (450 GeV beam energy): ⇒ Fixed target: √s = 29.1 GeV ⇒ Collider: √s = 900 GeV Christoph Blume, Dubna Aug. 2012

52 Christoph Blume, Dubna Aug. 2012
Luminosity L Na(b) = number of particles per bunch j = number of bunches v = velocity of the bunches u = circumference of collider A = beam cross section at collision point Christoph Blume, Dubna Aug. 2012

53 Time Projection Chamber: ALICE
Field cage Readout chamber E-Field 510 cm HV electrode (100 kV) Volume: 88 m3 Drifttime 93 μs #channels: Christoph Blume, Dubna Aug. 2012

54 Christoph Blume, Dubna Aug. 2012
ALICE-TPC Christoph Blume, Dubna Aug. 2012

55 Christoph Blume, Dubna Aug. 2012
TPC Readout Christoph Blume, Dubna Aug. 2012

56 Specific Energy Loss dE/dx
Christoph Blume, Dubna Aug. 2012

57 Christoph Blume, Dubna Aug. 2012
Bethe-Bloch Equation Christoph Blume, Dubna Aug. 2012

58 Christoph Blume, Dubna Aug. 2012
dE/dx-Measurement Christoph Blume, Dubna Aug. 2012

59 Christoph Blume, Dubna Aug. 2012
Weak Decay Topologies V0 Topology (K0s, Λ): Ξ- (Cascade) Ω- Topology: Christoph Blume, Dubna Aug. 2012

60 Strangeness Production in π+p
- K0 p + Associated production: Christoph Blume, Dubna Aug. 2012

61 Reconstruction via Decay Topology
NA49 NA57 NA57 Christoph Blume, Dubna Aug. 2012

62 Armenteros-Podolanski Plot
Christoph Blume, Dubna Aug. 2012

63 Invariant Mass Spectra (K0s, -, - )
Entries minv(+,-) (GeV/c2) Entries - K0s Christoph Blume, Dubna Aug. 2012


Download ppt "Christoph Blume, Dubna Aug. 2012"

Similar presentations


Ads by Google