Download presentation
Presentation is loading. Please wait.
Published byMargery Gaines Modified over 9 years ago
1
The meson landscape Scalars and Glue in Strong QCD New states beyond Weird baryons: pentaquark problems “Diquarks,Tetraquarks, Pentaquarks and no quarks” 1 Diquarks, Tetraquarks, and no quarks (but no pentaquarks) “Exotics: what needs to be measured”
2
Why do we need to teach science?
3
Physics Problem: How to get the car out of the water?
4
Use a tow truck!
5
A closer look to check its all OK?
7
Physics Problem: Part 2: How to get the tow truck out of the water?
8
….. use a bigger tow truck……
11
Physics Problem Part 3: How to get…… 1 2 3 …out of the water.
12
Ask a physicist
13
IDEAS 1. Quarks, Chromostatics and Glueballs 2. Strong QCD, flux tubes and hybrids PHENOMENOLOGY 3. Scalar glueball: whats the evidence? 4. Hybrids and Tetraquarks 5. Hybrid charmonium??
14
But first: A taster of the current charmonium puzzle
15
Belle e+e- to + X ???
16
e+e- \to psi pi pi BaBar sees new vector cc* Y(4260)
19
Y(4260) = Non resonant S-wave threshold Y(4260) Three Possibilities Experimental distinctions….later
20
1.HOW QUARKS BEHAVE CHROMOSTATICS and glueballs
21
+ + Quarks carry any of three “colour” charges +
22
Antiquarks carry any of three “colour” charges but negative _ _ _
23
Now use familiar rules “Like charges (colours) repel; opposite (colours) attract”
24
Now use familiar rules “Like charges (colours) repel; opposite (colours) attract” + _ Makes a “meson”. Simplest “chromostatic” analogue of electrostatic positronium
25
The THREE colours enable quarks to attract one another making BARYONS (e.g. the proton)
29
baryon
30
+ + -- A diquark Can attract an anti-diquark Making a meson that is a tetraquark
31
+ + -- How can we tell if its this Or this? + - (later)
32
Colour charge Baryons Nucleus Electric charge Atoms Molecules Quantum Electrodynamics: QED Quantum Chromodynamics: QCD Interaction of electric charges and photons Interaction of colour charges and gluons
33
q q Gluon br* Like QED as far as pert theory concerned Strong at long range/low energy Need lattice QCD and models based on this Gluon is coloured Carries the “charge”
34
Gluon bg*Gluon b*g Colour singlet glueball (Strong QCD more complicted than this OgE example)
35
Glueballs spectrum from Lattice Far away from qq* lowest multiplets… except for 0++ what can be said about glueballs?
36
2.Strong QCD: FLUX TUBES and HYBRIDS
37
QCD inspired potential for heavy QQ*
38
2S: 1- 0- 1S: 1- 0- 1D:1- 2- 3- 2- Quarkonium template: qq* L + S (= 0,1) =J L=0 L=1L=2 1P:0+ 1+ 2+ 1+
39
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ Quarkonium template: Scalar qq* is canonical
40
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 9460 10023 9860 9893 9913 3686 3097 3415 3510 3556 3772 cc*) Narrow below MM threshold
41
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 9460 10023 9860 9893 9913 3686 3097 3415 3510 3556 3772 cc*) Lattice QCD: Linear: Flux tube…..implies…
42
flux-tube degrees-of-freedom c.m. e.g. p=1
43
flux-tube degrees-of-freedom c.m. e.g. p=1 Costs about 1 to 1.5GeV energy to excite phonon “pi/R” Hybrid nn* @ 2GeV; Hybrid cc* @ 4-4.5GeV
44
Gluonic hybrid mesons c.m. e.g. p=1 Exciting the flux tube 2006:Lattice QCD seems to confirm flux tube model predictions !
45
Lattice: 1.8-2.2 1-+ signals: resonant? hybrid or molecule? E1 photoproduction of hybrids gamma p to n H^+ \sim 50% relative to conventional mesons (Isgur; FC Dudek) 2+- also expected. Diffractive Photoproduction!! Should exceed 1-+ strength
46
Lattice: 1.8-2.2 2+- also expected. Diffractive Photoproduction!! Should exceed 1-+ strength
47
flux-tube degrees-of-freedom c.m. e.g. p=1 are new degrees-of-freedom, not present in the quark model. Isgur showed that they have measurable effects on conventional states Close Dudek: E1 excitation of hybrids = r^2 meson: Cabibbo Radicatti (Lattice only now beginning to look at this)
48
flux-tube breaking and decays c.m. e.g. p=1 Break tube: S+P states yes; S+S suppressed 1-+ \to pi b_1:pi f_1 = 4:1 and big FC Page95
49
flux-tube breaking and decays c.m. e.g. p=1 Break tube: S+P states yes; S+S suppressed 1-+ \to pi b_1:pi f_1 = 4:1 and big FC Page95 QCD Lattice 06: Michael+McNeile confirm this !! S-wave decay amplitude at threshold agree flux tube prediction Beware naïve comparison of widths Implies FT model estimates somehow mimic strong QCD
50
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 9460 10023 9860 9893 9913 3686 3097 3415 3510 3556 3772 cc*) Narrow below MM threshold
51
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 9460 10023 9860 9893 9913 3686 3097 3415 3510 3556 3772 cc*) Narrow below MM threshold Either no G with these JPC in this region (0-+ 2.5<eta_c) (1– 3.8Gev ~ psiprime?) or don’t couple strongly to G
52
Glueballs spectrum from Lattice
53
Glueballs also predicted: Strong QCD spectrum from Lattice Far away from qq* lowest multiplets… except for 0++ Only scalar glueball below 2 GeV
54
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 780/1020 1460 1700 I=1 vector : I=0 nn*; ss* 1320 1270/1525 1300 1285/1530 + Problem of nn* ss* flavour mixing Clean below S-wave MM thresholds And no prominent G expected
55
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 780/1020 1460 1700 I=1 vector : I=0 nn*; ss* 1320 1270/1525 1300 1285/1530 1420 1370/1500/1710 + Problem of nn* ss* flavour mixing
56
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 1460 1700 I=1 vector : I=0 J P = 2 + 1 + 0 + 13201270/1525 13001285/1530 1420 1370/1500/1710 980 980/600
57
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 1460 1700 I=1 vector : I=0 J P = 2 + 1 + 0 + 13201270/1525 13001285/1530 1420 1370/1500/1710 980 980/600 [qq][q*q*]
58
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 1460 1700 I=1 vector : I=0 J P = 2 + 1 + 0 + 1270/1525 1285/1530 0+ 1370/1500/1710 980/600 ? qq* + Glueball Lattice G =1.6 \pm
59
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 1460 1700 I=1 vector : I=0 J P = 2 + 1 + 0 + 1270/1525 1285/1530 0+ 1370/1500/1710 980/600 ? qq* + Glueball Lattice G =1.6 \pm Data do not imply G But given lattice and qq* Does consistent pic emerge? Can data eliminate it; or even make it robust?
60
3.Scalar Glueball: WHATS the EVIDENCE?
63
Glueballs also predicted: Strong QCD spectrum from Lattice Far away from qq* lowest multiplets… except for 0++ Only scalar glueball below 2 GeV
64
2S: 1- 1S: 1- 1D: 1- 2+ 1+ 0+ 770 780/1020 1460 1700 I=1 vector : I=0 nn*; ss* 1320 1270/1525 1300 1285/1530 1420 1370/1500/1710 + Problem of nn* ss* flavour mixing
65
Scalar Glueball and Mixing s n G
66
Meson 1710 1500 1370 s n G
67
Scalar Glueball and Mixing Meson G ss* nn* 1710 0.39 0.91 0.15 1500 - 0.65 0.33 - 0.70 1370 0.69 - 0.15 - 0.70 s n G LEAR/WA102 Meson pair decays
68
Meson G ss* nn* 1710 0.39 0.91 0.15 1500 - 0.65 0.33 - 0.70 1370 - 0.69 0.15 0.70 s n 0- 0- meson decays LEAR/ WA102 FC Kirk Scalar Glueball and Mixing a simple example for expt to rule out Nontrivial correlation with relative masses heavy l light middle
69
Scalar Glueball and Mixing: how to measure flavour state Meson G ss* nn* 1710 0.39 0.91 0.15 1500 - 0.65 0.33 - 0.70 1370 0.69 - 0.15 - 0.70 s n
70
Scalar Glueball and Mixing Meson G ss* nn* 1710 0.39 0.91 0.15 1500 - 0.65 0.33 - 0.70 1370 0.69 - 0.15 - 0.70 s n
71
Coming soon from BES and CLEO-c A flavour filter for 0++ 0-+ 2++ mesons and glueballs >1 billion1000 per meson Challenge: Turn Lattice QCD Glueball spectrum into physics
72
Glueballs and central production
73
High energy; pomeron; glue(balls)
74
Glueballs and central production G Idea: Robson, FC 77
75
Glueballs and central production Gqq* Reality: qq* (also) produced How to separate G and qq*? FC Kirk Schuler 97-00
76
Two configurations for same t1,t2 c.m picture G/qq* G 1 2 2 1 p_T(1)-p_T(2) = “big” p_T(1)-p_T(2) = “small”
77
Two configurations for same t1,t2 lab picture p_T(1)-p_T(2) = “big” p_T(1)-p_T(2) = “small” 1beam 2 target 1beam 2target
78
Two configurations for same t1,t2 lab picture They are related by….. …Phi rotation 1beam 2 target 1beam 2target
79
Rich J^{PC} dependence 0^{-+} 1^{- -} 1^{++} 2^{- +}
80
Rich J^{PC} dependence 0^{++} 2^{++}
81
0^{-+}:Eta’(960) phi and t distributions gg fusion or any vector vector sin^2(phi)… …and vanish as t \to 0
82
Also explains Eta_2(1645) phi and t
83
And changing behaviour of 1^{++} f1(1285) t1-t2<0.2 t1-t2>0.4 All t
84
So 0- 1+ 2- qq* “explained” Pomeron transforms like vector gluon gluon fusion? (details suggest more complicated) 0- 1+ 2- … are “explained” but for 0++ and 2++ something weird is happening
85
Central Production pp \to pMp 0+ and 2+ qq* G ?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.