Download presentation
Presentation is loading. Please wait.
Published byGodfrey Knight Modified over 9 years ago
1
PLUTO: a modular code for computational astrophysics Developers: A. Mignone 1,2, G. Bodo 2 1 The University of Chicago, ASC FLASH Center 2 INAF Osseratorio Astronomico di Torino 3 Universita’ degli studi di Torino 4 Universita’ degli studi di Firenze C. Zanni 3, T. Laverne 2, F. Rubini 4, S. Massaglia 3, A. Rogava 3, A. Ferrari 3
2
OUTLINE Written in C ( ~ 33,000 lines) Explicit, compressible code (FV): –Shock capturing –High-mach number flows Works in 1, 2, 3-D Modular structure: –Physics –Time stepping –Interpolations –Riemann Solvers No AMR Geometry support (Cart, Cyl, Spher) Serial/Parallel Implementation (MPI)
3
Requirements (ANSI) C compiler Python (v. > 1.6) GNU Make Optional MPI (arraylib by A. Malagoli ) GD graphics library
4
PLUTO Fundamentals: PHYSICS Modules TIME_STEPPING Geometry\ Grid Generation
5
Source Tree Interpolation RMHD RHD HDMHD Update Sources Time_Stepping UnsplitSplit UnUn U n+1 physics modules
6
Eos: Hydrodynamics (HD) Module
7
Relativistic Hydrodynamics (RHD) Module Multi dimensional PPM, full corner coupled transport (Colella 1990) Nonlinear Riemann solver w/ general Eos (Mignone et al. submitted to ApJ), FLASH Code /( -1) EoS = 4/3 = 5/3
8
Magnetohydrodynamics (MHD) Module Monopole Control –Powell (Powell 94) –Monopole Diffusion (Marder 87) –Flux CT (Balsara 2004) Splitting of Magnetic Field, B = B 0 (x) + B 1 (x,t) suitable for low- plasma.
9
Relativistic Magnetohydrodynamics (RMHD) Module Shares Features w/ MHD and RHD
10
Algorithms Time Stepping Fwd Euler (Split/Unsplit) RK 2 nd (Split/Unsplit) RK 3 rd (Split/Unsplit) Hancock (Split/CTU) Characteristic Tracing (Split/CTU) Interpolation Prim. TVD-limited (II order) Characteristic TVD-limited Piecewise-Parabolic Multi-D Linear Interpolation 2 nd and 3 rd order WENO Riemann Solvers Riemann (non-linear) TVD/ROE HLL TVDLF (split) HD RHD MHD RMHD
11
Additional Features Particles (T. Laverne): Optically thin radiative losses power-law 2 T (Analytic integrator) “Interstellar” cooling function: T > 10 4 K, Dalgarno & McCray Cooling (1972) T < 10 4 K, NEQ (H + H2) (Oliva, 1992) NEQ cooling function for shocks < 80 Km/s (Raymond 1987) Implicit Thermal Conduction (1-D only) Explicit /Implicit 2 nd order integrators
12
Problem Setup Python Interface: 1.definitions.h 2.makefile User: 3. init.c Set initial conditions userdef b. c. Bckgr. B Gravity 4. pluto.ini CFL Domain output freq. etc..
13
Test Gallery 2-D Riemann Problem (HD) Shock-Cloud Interaction(MHD) 2-D Riemann Problem (RHD) RMHD Blast Wave
14
Applications Axisymmetric MHD Jet Mach = 50 = 1 in / out = 1/20 3D RHD Jet (Rossi et at. 2003) Mach=3 = 10 in / out = 1.e-4 Keplerian Disk (Murante et al. 2004) Vortex-wave generation 2D RHD KH V = 0.95c M = 1.17
15
More Applications Thermally unstable radiative shocks (Mignone, submitted to ApJ) Accretion Column onto white dwarf
16
Summary Simple, fast code for single/multi proc. User-friendly versatile suitable for algorithm comparison (fairly) well documented >> Official release: Feb 2005 << mignone@oddjob.uchicago.edu, bodo@to.astro.it
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.