Download presentation
Presentation is loading. Please wait.
1
Automata
3
‘0101010’
21
01111?
22
1100?
23
11010?
24
000?
25
00110?
26
AcceptNot Accept 010101001111 1100000 1101000110
27
AcceptNot Accept 0101010010101001111 1100000 1101000110
28
Accept 되는 가장 짧은 String?
29
‘’
30
ε
31
(Q, Σ, δ, q 0, A)
33
a finite set of states.
34
(Q, Σ, δ, q 0, A) a finite set of states.
35
(Q, Σ, δ, q 0, A) a finite set of states. {s 1, s 2 }
36
(Q, Σ, δ, q 0, A)
37
a finite set of symbols
38
(Q, Σ, δ, q 0, A) a finite set of symbols : alphabet
39
(Q, Σ, δ, q 0, A) a finite set of symbols : alphabet
40
(Q, Σ, δ, q 0, A) a finite set of symbols : alphabet {0, 1}
41
(Q, Σ, δ, q 0, A)
42
the transition function
43
(Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q
44
(Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q
45
(Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q { ((s 1, 0), s 2 ), ((s 1, 1), s 1 ), ((s 2, 0), s 1 ), ((s 2, 1), s 2 ) }
46
(Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q 01 s1s1 s2s2 s1s1 s2s2 s1s1 s2s2
47
(Q, Σ, δ, q 0, A)
48
the start state
49
(Q, Σ, δ, q 0, A) the start state
50
(Q, Σ, δ, q 0, A) the start state s1s1
51
(Q, Σ, δ, q 0, A)
52
accept states
53
(Q, Σ, δ, q 0, A) accept states
54
(Q, Σ, δ, q 0, A) accept states {s 1 }
55
(Q, Σ, δ, q 0, A) : {s 1, s 2 } : {0, 1} : {((s 1, 0), s 2 ), ((s 1, 1), s 1 ), ((s 2, 0), s 1 ), ((s 2, 1), s 2 ) } : s 1 : {s 1 } QΣδq0AQΣδq0A
57
(Q, Σ, δ, q 0, A) QΣδq0AQΣδq0A
58
: {1, 2, 3, 4, 0} : {a, b, c} : { ((1, a), 2), ((1, b), 0), ((1, c), 0), ((2, a), 0), ((2, b), 3), ((2, c), 0), ((3, a), 0), ((3, b), 0), ((3, c), 4), ((4, a), 2), ((4, b), 0), ((4, c), 4) } : 1 : {4} QΣδq0AQΣδq0A ?
59
(Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : { ((1, a), 2), ((1, b), 0), ((1, c), 0), ((2, a), 0), ((2, b), 3), ((2, c), 0), ((3, a), 0), ((3, b), 0), ((3, c), 4), ((4, a), 2), ((4, b), 0), ((4, c), 4), ((0, a), 0), ((0, b), 0), ((0, c), 0) } : 1 : {4} QΣδq0AQΣδq0A
60
(Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : : 1 : {4} QΣδq0AQΣδq0A abc 1200 2030 3004 4204 0000
61
(Q, Σ, δ, q 0, A) : {1, 2, 3, 4, 0} : {a, b, c} : : 1 : {4} QΣδq0AQΣδq0A abc 12 23 34 424
62
Dead state
65
(Q, Σ, δ, q 0, A) : {q 0, q 1, q 2, q 3, q 4 } : {0, 1} : { ((q 0, 0), q 0 ), ((q 0, 1), q 0 ), ((q 0, 0), q 3 ), ((q 0, 1), q 1 ), ((q 3, 0), q 4 ), ((q 1, 1), q 2 ), ((q 4, 0), q 4 ), ((q 4, 1), q 4 ), ((q 2, 0), q 2 ), ((q 2, 1), q 2 ) } : q 0 : {q 2, q 4 } QΣδq0AQΣδq0A
66
(Q, Σ, δ, q 0, A) : {q 0, q 1, q 2, q 3, q 4 } : {0, 1} : : q 0 : {q 2, q 4 } QΣδq0AQΣδq0A 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4
67
(Q, Σ, δ, q 0, A) the transition function : δ: Q × Σ → Q
70
Q × Σ : { (q 0, 0), (q 0, 1), (q 1, 0), (q 1, 1), (q 2, 0), (q 2, 1), (q 3, 0), (q 3, 1), (q 4, 0), (q 4, 1) } δ : { ((q 0, 0), q 0 ), ((q 0, 1), q 0 ), ((q 0, 0), q 3 ), ((q 0, 1), q 1 ), ((q 3, 0), q 4 ), ((q 1, 1), q 2 ), ((q 4, 0), q 4 ), ((q 4, 1), q 4 ), ((q 2, 0), q 2 ), ((q 2, 1), q 2 ) }
71
q0 q3 0 0 둘 다 가능 ! 두 개의 경로로 다 해본다. 하나라도 accept 되면 accept.
72
‘011’ : q0 → q3 Not Accept
73
‘011’ : q0 → q0 → q1 → q2
74
‘001’ : q0 → q0 → q0 → q3 Not Accept
75
‘001’ : q0 → q3 → q4 → q4
76
‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2
77
‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2
78
‘001’ : q0 → q3 → q4 → q4 ‘011’ : q0 → q0 → q1 → q2 Nondeterministic
79
Nondeterministic Finite Automata
80
No Input
81
NFA
82
DFA
83
Deterministic Finite Automata
84
NFA ⊃ DFA
85
NFA ⇒ DFA
86
Nondeterministic Finite Automata
87
⇒ Deterministic Finite Automata
88
01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4
89
01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q4q4 q4q4 q4q4 q4q4
90
0 1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2
91
0 1 01 q0q0 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2
92
01 q0q0 q 0, q 3 q0, q1q0, q1 01 q0q0 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
93
01 q0q0 q 0, q 3 q0, q1q0, q1 q0, q1q0, q1 01 q0q0 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
94
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
95
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
96
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
97
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
98
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
99
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
100
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
101
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
102
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2 0 1
103
0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2
104
0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2
105
0 1 01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 01 q0q0 q 0, q 3 q 0, q 1 q1q1 q2q2 q2q2 q2q2 q2q2 q3q3 q2q2
106
01 q0q0 q 0, q 3 q0, q1q0, q1 q 0, q 2, q 3 q0, q1q0, q1 q0, q1q0, q1 q0, q3q0, q3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2 q 0, q 2, q 3 q 0, q 1, q 2
107
01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }
108
1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }
109
1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 1, q 2 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } {q 0, q 2, q 3 }{q 0, q 1, q 2 }
110
01 {q 0 }{q 0, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 }{q 0, q 1 } {q 0, q 3 }{q 0, q 2, q 3 } 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 0 1 {q 0, q 2, q 3 }
111
0 1 1 0 {q 0, q 3 } {q 0 } {q 0, q 1 } {q 0, q 2, q 3 } {q 0, q 1, q 2 } 1 0 0 1 0 1 {q 0, q 2, q 3 } NFA DFA
114
abc
115
abccccccccccc
116
abcccccccccccabc
117
abcc...cabcc...cabccc...cc
118
(abc + ) +
119
Regular Expression
120
|, (), *, +, ε
122
OR
123
|, (), *, +, ε OR gray|grey -> {‘gray’, ‘grey’}
124
|, (), *, +, ε
125
scope
126
|, (), *, +, ε scope gray|grey = gr(a|e)y
127
|, (), *, +, ε
128
zero or more of the preceding element
129
|, (), *, +, ε zero or more of the preceding element ab*c →
130
|, (), *, +, ε zero or more of the preceding element ab*c → {"ac", "abc", "abbc", "abbbc", …}
131
|, (), *, +, ε
132
one or more of the preceding element
133
|, (), *, +, ε one or more of the preceding element ab + c →
134
|, (), *, +, ε one or more of the preceding element ab + c → {"abc", "abbc", "abbbc", …}, but not "ac”
135
|, (), *, +, ε one or more of the preceding element ab + c = abb*c
136
|, (), *, +, ε one or more of the preceding element ab + c = abb*c = ab*bc
137
|, (), *, +, ε
138
empty string
139
|, (), *, +, ε empty string : “”
140
|, (), *, +, ε empty string : “” a(b|ε)c →
141
|, (), *, +, ε empty string : “” a(b|ε)c → {"abc", "ac"}
144
abc +
146
(abc + ) +
149
((0|1)*00(0|1)*) | ((0|1)*11(0|1)*)
152
(0|1)* (00|11) (0|1)*
154
( 1 | 01*0 )*
155
{01, 0011, 000111, 00001111,…}
156
0n1n0n1n
157
Is it Regular?? 0n1n0n1n
158
0 1 {01}
159
0 1 0 1 1 {01, 0011}
160
0 1 0 1 1 0 1 1 {01, 0011, 000111}
161
0 1 0 1 1 0 1 1 0 1 1 {01, 0011, 000111, 00001111}
162
{01, 0011, 000111, 00001111, …} 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1
163
0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 cannot be FINITE automata 0n1n0n1n
164
NOT regular 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0n1n0n1n
165
Pumping Lemma
166
concept
167
Finite Automata Infinite Sentence &
168
0 1 0 1 1 ={01, 0011} L(01|0011)
169
1 ={01, 011, 0111, 01111, …} 0 L(01*)
170
1 ={01, 011, 0111, 01111, …} 0 L(01*)
171
1 0 ={0, 10, 00, 110, 0100, …} L( (0|1)*0 ) 1 0
172
L( a(bc)*d ) ={ad, abcd, abcbcd, …}
173
Pumping Lemma
174
∀ : for all ∃ : exist
175
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular
176
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p a(bc)*d If L is regular
177
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p a(bc)*d If L is regular
178
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 a(bc)*d If L is regular
179
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 a(bc)*d If L is regular
180
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d If L is regular
181
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular
182
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular
183
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular
184
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular
185
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d | y | = 2 If L is regular
186
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular
187
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d xy = abc | xy |=3 If L is regular
188
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular
189
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d xy i z = a(bc)*d If L is regular
190
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w = {abcd, abcbcd, …} a(bc)*d If L is regular
191
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular
192
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular
193
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd | y | = 2 If L is regular
194
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular
195
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd xy = abc | xy |=3 If L is regular
196
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd If L is regular
197
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = bcd xy i z = a(bc) + d If L is regular
198
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p p=3 w ∈ {abcd, abcbcd, …} a(bc)*d x = a y = bc z = d If L is regular
199
Pumping Lemma Why?
200
Pumping Lemma to prove not regular
201
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular
202
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p If L is regular
203
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p L is not regular if
204
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∃ p ≥ 1 s.t. ∀ w ∈ L, | w | > p L is not regular if
205
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
206
w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
207
∀ x, y, z w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
208
∀ x, y, z w = xyz | y | ≥ 1 | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
209
∀ x, y, z w = xyz | y | = 0 or | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
210
∀ x, y, z w = xyz | y | = 0 or | xy | ≤ p ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
211
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
212
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∀ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
213
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
214
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
215
Pumping Lemma to prove not regular
216
0n1n0n1n
217
0n1n0n1n ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
218
0n1n0n1n ∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if
219
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n
220
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n
221
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p
222
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p
223
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ)ⅱ)ⅰ)ⅱ)
224
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = ε z = 0 p-m-n 1 p ⅱ )
225
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = ε z = 0 p-m-n 1 p ⅱ )
226
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )
227
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )
228
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ )
229
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z =
230
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z = 0 p-n 1 p
231
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 m y = 0 n (n>0) z = 0 p-m-n 1 p ⅱ ) i =0, xy i z = 0 p-n 1 p ∈ L (0 n 1 n )
232
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) ⅱ ) x = 0 p y = 1 n (n>0) z = 1 p-n
233
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) ⅱ ) ?
234
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = 0 n (n>0) z = 0 p-m-n 1 n
235
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p 0n1n0n1n let w =0 p 1 p ⅰ ) x = 0 p y = 0 n (n>0) z = 0 p-m-n 1 n ⅱ ) other wise | y | = 0 or | xy | > p
236
(01) n 1 n
237
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ ) x = (01) m y = (01) n (n>0) z = (01) p-m-n 1 p ⅱ ) i =0, xy i z = (01) p-n 1 p
238
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ ) ⅱ ) x = (01) m y = (01) n 0 (n>0) z = 1(01) p-m-n-1 1 p i =0, xy i z = (01) p-n 1 p
239
∀ x, y, z w = xyz | y | = 0 or | xy | > p or ∃ i ≥ 0, xy i z ∈ L ∀ p ≥ 1 ∃ w ∈ L, | w | > p s.t. L is not regular if assume p (01) n 1 n let w =(01) p 1 p ⅰ)ⅱ)ⅲ)ⅳ)ⅰ)ⅱ)ⅲ)ⅳ) i =0, xy i z = (01) p-n 1 p
240
? regular
241
Context Free regular
242
Context Free Grammar
243
S → 0S1 S → ε
244
S → 0S1 S → ε L(S) = 0 n 1 n
245
S → 0S1 | ε L(S) = 0 n 1 n
246
S → S + S S → S - S S → S * S S → S / S S → ( S )
247
S → x | y | z S → S + S S → S - S S → S * S S → S / S S → ( S )
248
S → A S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9
249
S → A S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9|AA
250
S → B S → S + S S → S - S S → S * S S → S / S S → ( S ) A → 0|1|2|3|4|5|6|7|8|9|AA|ε B → 0 | (1|2|3|4|5|6|7|8|9)A
252
S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
253
(V, Σ, R, S)
255
a finite set of non-terminal characters
256
(V, Σ, R, S) a finite set of variables
257
(V, Σ, R, S) S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice a finite set of variables
258
(V, Σ, R, S) a finite set of variables {S, NP, VP, N, V, A} S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
259
(V, Σ, R, S)
260
a finite set of terminals
261
(V, Σ, R, S) a finite set of terminals S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
262
(V, Σ, R, S) a finite set of terminals {dogs, cats, like, nice} S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
263
(V, Σ, R, S)
264
a finite relation from V to (V ∪ Σ)*
265
(V, Σ, R, S) a finite rewrite rules(productions)
266
(V, Σ, R, S) a finite rewrite rules(productions) S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
267
(V, Σ, R, S) a finite rewrite rules(productions) S → NP VP NP → A N | N … A � → nice S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
268
(V, Σ, R, S)
269
a start variable
270
(V, Σ, R, S) a start variable S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
271
(V, Σ, R, S) a start variable S S → NP VP NP → A N | N VP → V NP N → � dogs | cats V � → like A � → nice
272
PDA
273
Push Down Automata
274
Pushdown Automata
277
State
279
Input Character
280
State
281
Input Character State Change in Stack
282
Input Character State Change in Stack
336
(Q, Σ, Γ, δ, q 0, Z, F)
338
a finite set of states
339
(Q, Σ, Γ, δ, q 0, Z, F) a finite set of states
340
(Q, Σ, Γ, δ, q 0, Z, F) a finite set of states {p, q, r}
341
(Q, Σ, Γ, δ, q 0, Z, F)
342
a finite set of input character
343
(Q, Σ, Γ, δ, q 0, Z, F) input alphabet
344
(Q, Σ, Γ, δ, q 0, Z, F) input alphabet
345
(Q, Σ, Γ, δ, q 0, Z, F) {0, 1} input alphabet
346
(Q, Σ, Γ, δ, q 0, Z, F)
347
a finite set of stack character
348
(Q, Σ, Γ, δ, q 0, Z, F) stack alphabet
349
(Q, Σ, Γ, δ, q 0, Z, F) stack alphabet
350
(Q, Σ, Γ, δ, q 0, Z, F) stack alphabet {A, Z}
351
(Q, Σ, Γ, δ, q 0, Z, F)
352
Transition relation: Q x (Σ ∪ {ε}) x Г →Г*
353
(Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г*
354
(Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA))
355
(Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z))
356
(Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z)) ((q,1,A), (q,ε))
357
(Q, Σ, Γ, δ, q 0, Z, F) Transition relation: Q x (Σ ∪ {ε}) x Г →Г* ((p,0,Z), (p,AZ)) ((p,0,A), (p,AA)) ((p,ε,A), (q,A)) ((p,ε,Z), (q,Z)) ((q,1,A), (q,ε)) ((q,ε,Z), (r,Z))
358
(Q, Σ, Γ, δ, q 0, Z, F)
359
start state
360
(Q, Σ, Γ, δ, q 0, Z, F) start state
361
(Q, Σ, Γ, δ, q 0, Z, F) start state p
362
(Q, Σ, Γ, δ, q 0, Z, F)
363
initial stack symbol
364
(Q, Σ, Γ, δ, q 0, Z, F) initial stack symbol
365
(Q, Σ, Γ, δ, q 0, Z, F) initial stack symbol Z
366
(Q, Σ, Γ, δ, q 0, Z, F)
367
accepting states
368
(Q, Σ, Γ, δ, q 0, Z, F) accepting states
369
(Q, Σ, Γ, δ, q 0, Z, F) accepting states {r}
370
0n1n0n1n
371
000….0111….1
372
Z
373
Z
374
A:AAZA:AAZ Z
375
A:AAZA:AAZ
376
A:AAZA:AAZ Z
377
0n1n2n0n1n2n
378
000…0111…1222…2
379
Z
380
Z
381
A:AAZA:AAZ Z
382
A:AAZA:AAZ
383
Z A:AAZA:AAZ
384
Z
385
Z
386
Z
387
Z Z
388
Z Z
389
A:AAZA:AAZ Z Z Z
390
A:AAZA:AAZ Z
391
Z A:AAZA:AAZ Z
392
Z B:BBZB:BBZ A:AAZA:AAZ Z
393
Z B:BBZB:BBZ
394
Z Z Z B:BBZB:BBZ
395
Z Z
396
0n1n2n0n1n2n
397
Turing Machine
398
000111222
399
bbbbbbbbb000111222bbbbbbbbb
400
bbbbbbbbq 0 000111222bbbbbbbb
401
q 0 000111222
402
0q 1 00111222
403
00q 1 0111222
404
000q 1 111222
405
0001q 1 11222
406
00011q 1 1222
407
000111q 1 222
408
000111q 2 222
409
00011q 3 3222
410
0001q 3 13222
411
000q 3 113222
412
00q 3 0113222
413
0q 3 00113222
414
q 3 000113222
415
q 4 000113222
416
bq 1 00113222
417
b0q 1 0113222
418
b00q 1 113222
419
b001q 1 13222
420
b0011q 1 3222
421
b0011q 2 3222
422
b001q 3 33222
423
b00q 3 133222
424
b0q 3 0133222
425
bq 3 00133222
426
bq 4 00133222
427
bbq 1 0133222
428
bb0q 1 133222
429
bb01q 1 33222
430
bb01q 2 33222
431
bb0q 3 333222
432
bbq 3 0333222
433
bbq 4 0333222
434
bbbq 1 333222
435
bbbq 2 333222
436
bbbq 5 333222
437
bbb333222q 5
438
bbb333222q 6
439
bbb33322q 7 b
440
bbbq 8 33322b
441
bbbbq 7 3322b
442
bbbb3322q 7 b
443
bbbbq 8 332bb
444
bbbbb32q 7 bb
445
bbbbbq 8 3bb
446
bbbbbbq 7 bb
447
bbbbbbq 8 bb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.