Download presentation
Presentation is loading. Please wait.
Published byCatherine Stokes Modified over 9 years ago
1
|Vus| and K S decays from KLOE Gaia Lanfranchi, LNF/ INFN On behalf the KLOE Collaboration XL Rencontres de Moriond 5-12 March, 2005
2
Kaon physics at KLOE: K L , e, + - 0,3 0 this talk K L lifetimethis talk K L /K L 3 0 Phys. Lett. B566 61 (2003) K 0 mass KLOE Note 181 (http://www.lnf.infn.it/kloe) K S e Phys. Lett. B535 37 (2002) Preliminary update with ’01-’02 data K S π First observation K S 0 0 0 this talk KS π+π-π0KS π+π-π0 In progress K S + - ( ) K S 0 0 Phys. Lett. B538 21 (2002) Update with ’01-’02 data in progress Vus from K + In progress K + + 0 0 Phys. Lett. B 597 139 (2004) |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
3
The KLOE Detector: Calorimeter Drift Chamber σ(E)/E = 5.7%/ E(GeV) σ(t) = 54 ps/ E(GeV) 50 ps p /p 0.4 % (tracks with > 45°) x hit 150 m (xy), 2 mm (z) x vertex ~ 1 mm (M ) ~ 1 MeV |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
4
V us is a fundamental parameter of SM PDG 2004: violation of unitarity? To measure V us we need Γ Le3 …. We need to measure: BR(K Le3 ), τ L |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
5
K L lifetime: direct measurement K L lifetime: direct measurement K L lifetime is “hard” to measure ! Last measurement 30 years ago (Vosburgh et al, PRD 6 (1972), 1834): Can’t stop K L ’s! Knowledge of the K L momentum spectrum is required. Measure K L lifetime @ KLOE is possible because: K L ’s are slow (βγ 0.22, λ L 340 cm); K L ’s are (almost) monochromatic (P(K L ) 110 MeV); K L ’s are background free (unambiguously tagged ). |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
6
K L lifetime: statistical error vs fit region K L lifetime: statistical error vs fit region |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN T = ΔL/λ Number of events δτ/τ 0.40 8,000,000 0.3% 0.04 8,000,000 2.4% 0.004 8,000,000 20% To reach the 0.3% statistical accuracy you need a factor 3.5 10 3 more events!! KLOE Statistical error Number of events in the fit region T = fit region in lifetime units
7
K L dominant BR’s: present experimental situation K L e K L K L 3 0 NA48: 0.4010±0.0045 KTeV: 0.4067±0.0011 PDG 2004: 0.3881±0.0027 KTeV: 0.2701 ±0.0009 PDG 2004: 0.2719±0.0022 K L π + π - 0 KTeV: 0.1252±0.0007 PDG 2004: 0.1258±0.0019 KTeV: 0.1945±0.0018 PDG 2004: 0.2105±0.0023 |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
8
K L dominant BR’s: K L dominant BR’s: |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN What is KLOE’s role in this scenario? KLOE can measure: absolute branching fractions (instead of ratios!); K L lifetime. Therefore KLOE can provide a complete and self- consistent set of measurements of the dominant K L decay widths without relying on external inputs.
9
The KLOE K L “beam”: K S + - KL 2KL 2KL 2KL 2 K L tagged by K S + - events: Efficiency ~ 70% (mainly geometrical) K L angular resolution: ~ 1° K L momentum resolution: ~ 1 MeV 1) Pure and tagged K L beam: we can measure absolute BRs since the normalization is provided by tagging events. 2) Low energy, monochromatic beam: P (K L ) 110 MeV, βγ 0.22, λ L 340 cm a big fraction of K L (50%) decays inside the detector We can measure K L lifetime. |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN KSKS KLKL BR = 34% p 110 MeV
10
K L absolute BR’s and lifetime: DATA SAMPLE: 2001+2002 data sample: 400 pb -1 statistics, 50 10 6 tagged K L : 13 million tagged K L used to evaluate the absolute BR’s; 40 million tagged K L used to evaluate systematic uncertainties; 15 million of K L 3π 0 for the direct measurement of the lifetime. |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
11
K L absolute BR’s: K L absolute BR’s: For each K L decay mode (i=π ,πe,3 0, + - 0 ) we count the number of events in a given fiducial volume: Reconstruction efficiencies: K L π , πe ε (rec) 60% K L π+π-π0 ε (rec) 45% K L 3π 0 ε (rec) 100% Integral over the fiducial volume: ε (FV, τ L ) 26%, depends on τ L Tagging efficiency: Depends on the channel Can introduce a BIAS |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
12
K L absolute BR’s: tag bias K L absolute BR’s: tag bias |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN Slightly different tagging efficiencies for different K L topologies: tag i / tag all 1 1) Different trigger efficiency for K L decays in FV / K L interactions in calo / K L punch-through: require that K S pions satisfy trigger conditions by themselves trigger efficiency cancels out 2) Interference effect between K S and K L tracks lowers reconstruction efficiency for K S π+π- decays at small R L : cut on the opening angle of K S pions Ke3 K 3 3 0 tag i / tag all.998(4).986(2).984(3) 1.017(3) After these cuts the tag bias is reduced to 1-2 %:
13
K L absolute BR’s: K L charged Charged decays selected by closing the kinematics at the vertex: P mis - E miss. Fit data with linear combination of 3 MC shapes. Large statistics, accuracy is dominated by systematics. Lesser of P miss E miss in or hyp. (MeV) |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
14
K L absolute BRs: K L charged P miss E miss (MeV) (πe hypothesis) P miss E miss (MeV) (πμ hypothesis) P miss - E miss distribution very sensitive to radiation and momentum resolution Check data/MC agreement via independent PID: e/μ/π from TOF and shower shape Radiative corrections properly included in the Monte Carlo generators. Enriched sample of K L πe events Enriched sample of K L π events |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
15
K L absolute BR’s: K L 0 0 0 |Vus| and K S decays from KLOE, G. Lanfranchi – LNF/INFN L LγLγ LKLK e+ e- π+ π+ π - π - solved for the two variables Lγ, L K Use events with 3 photons “clustering” a vertex 99.2% selection efficiency Residual background (1.3%, mainly π + π - π 0 events) is subtracted.. The photon vertex of K L 3 0 is reconstructed by TOF, using cluster time/position and K L momentum (from K S ). (X γ,Y γ,Z γ,T γ )
16
K L absolute BR’s: final results BR(K L e ) = 0.4049 0.0010 stat 0.0031 syst BR(K L ) = 0.2726 0.0008 stat 0.0022 syst BR(K L 3 ) = 0.2018 0.0004 stat 0.0026 syst BR(K L ) = 0.1276 0.0006 stat 0.0016 syst Absolute BR's results ( KL = 51.54 ns, PRD 6 (1972), 1834) S ystematics: |Vus| and K S decays from KLOE, G. Lanfranchi – LNF/INFN
17
K L dominant BR’s: unitarity and lifetime K L dominant BR’s: unitarity and lifetime The sum of the dominant branching fractions (plus K L rare decays from PDG) gives: |Vus| and K S decays from KLOE, G. Lanfranchi – LNF/INFN ε = 25% 340 cm The BR depend on the K L lifetime through the acceptance: Assuming BR(K L X) =1 we have an indirect measurement of the K L lifetime: KL = (50.72 stat syst ns (K L ) (cm) FV
18
K L dominant BR’s: results imposing unitarity BR(K L e ) = 0.4007 0.0006 0.0014 BR(K L ) = 0.2698 0.0006 0.0014 BR(K L 3 ) = 0.1997 0.0005 0.0019 BR(K L ) = 0.1263 0.0005 0.0011 |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN
19
K L dominant BR’s: comparison K L e (no PDG) 0.4045±0.0009 χ 2 = 5.1 K L 0.2702±0.0007 χ 2 = 0.3 K L 3 0 (no PDG) 0.1968±0.0012 χ 2 =1.9 K L π + π - 0 0.1255±0.0006 χ 2 = 0.4 KLOE NA48 KTeV PDG04 KLOE KTeV PDG04 KLOE NA48* KTeV PDG04 KLOE KTeV PDG04 * Presented by L.Litov @ICHEP04 15
20
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN L LγLγ LKLK e+ e- π+ π+ π - π - solved for the two variables Lγ, L K We use K L π 0 π 0 π 0 events tagged by K S π + π - events: “tagging” and “tagged” events are fully decoupled. trigger efficiency is 100%, almost flat in the fiducial volume The K L vertex is reconstructed by TOF, using cluster time/position and K L momentum (from K S π+π-). (X γ,Y γ,Z γ,T γ ) K L lifetime: direct measurement K L lifetime: direct measurement
21
K L lifetime: control sample ++ π-π- KSKS KLKL We use K L π + π - π 0 events to measure : EmC time scale calibration; Vertex resolution; Vertex reconstruction efficiency. |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN ++ -- γ γ e+ e- (vertex,π + π - ) 1 mm
22
K L lifetime: EmC time scale and vertex resolution Plot di time scale EmC Time Scale : Plot di risoluzione π + π - π 0 data: L K (+-) (cm) Vertex resolution: 2.5 cm set at 0.1% level |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN L(γγ) – L(π+π-) (cm) L(π + π - ) (cm)
23
K L lifetime: final result K L lifetime: final result τ L (KLOE) = (50.87 ±0.16 (stat) ± 0.26 (syst)) ns |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN 14 x 10 6 events Fit region = 6 -26 ns ( 40% τ L ) t*= L K /βγc (ns) + data Yes, it’s going down!! Events/0.3 ns
24
K L lifetime: comparison K L lifetime: comparison |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN KLOE direct KLOE indirect Vosburgh et al, PRD 6 (1972), 1834 average: τ L = (50.98 ± 0.21) ns PDG 2004 = (51.8 ± 0.4) ns
25
| V us | from K e3 decays and τ L : Most precise test of CKM unitarity comes from 1 st row: |V ud | 2 + |V us | 2 + |V ub | 2 ~ |V ud | 2 + |V us | 2 1 – where it can be tested at 10 -3 level: 2|V ud | V ud = 0.0015 from super-allowed 0 + 0 + Fermi transitions, n -decays 2|V us | V us = 0.0011 from semileptonic kaon decays (PDG 2002 fit) |V us | from neutral K l3 partial decay widths: V us f + (0) = G 2 M 5 K S ew I l ( +, 0 + ´,...) 128 3 Kl3 K0K0 1 + em,l 1 ½ f + K (0) form factor at zero momentum transfer, pure theory calculation ( PT, lattice) I( ) phase space integral, S ew short distance corrections (1.0232) +, 0 momentum dependence of vector and scalar form factors (f + (t), f 0 (t),t =q 2 ) em electromagnetic correction (amplitude and phase space): 0.5%K e3 - 0.8%K
26
|V us | from K e3 decays and τ L : Prescription from hep-ph/0411097 (F. Mescia @ICHEP04): 1) Quadratic parametrization of the form factor momentum dependence: from KTeV + ISTRA 2) K L lifetime from KLOE (average of the two measurements) : KL = (50.81 ns 3) BRs from KLOE set the sum = 1: 4) Form factor f + K (0) from Leutwyller-Roos: 0.961(8) confirmed by D. Becirevic et al (Lattice+CHPT) 0.960(9) M. Okamoto et al. (MILC) (Lattice+CHPT) 0.962(11) BR(K L e ) = 0.4007 0.0006 0.0014 BR(K L ) = 0.2698 0.0006 0.0014
27
| V us | f + Kπ (0) KLOE results: |V us | f + K (0) (K Se3 ) = 0.2169 0.0017 |V us | f + K (0) (K Le3 ) = 0.2164 0.0007 |V us | f + K (0)(K L 3 ) = 0.2174 0.0009 From Unitarity : (1-|V ud | 2 ) 1/2 f + K (0) = 0.2177 0.0028 |V us | from K l3 decays and τ L : PRD 6 (1972), 1834 KLOE
28
K S physics: first observation of K S π decay: K S physics: first observation of K S π decay: |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN 2001 Data signal + + Selection à la K S πe : K crash tag + 2 tracks from IP with M ππ < 490 MeV (reject K S ππ(γ)) TOF identification: compare πμ expected flight times, reject ππ,πμ bkg Kinematic closure: use K L to obtain K S momentum P K and test for presence of neutrino: E miss = M K 2 + P K 2 – E – E P miss = |P K – P – P |
29
The KLOE K S “beam”: The KLOE K S “beam”: |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN K L “ crash ” βγ 0.22, TOF 30 ns K S πe K S πe K S tagged by K L interaction in EmC: efficiency 30 % K S angular resolution: 1 (0.3 in ) K S momentum resolution: 1 MeV 3 · 10 5 tags/pb-1
30
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN Direct search for K S π 0 π 0 π 0 decay: K S 3 0 is pure CP violating decay, never observed: SM prediction: S000 = L000 | + 000 | 2, giving BR(K S 3 0 ) = 1.9 10 9 : Best result: BR(K S 3π 0 ) < 7.4 10 -7 (90% CL) (NA48, hep-ex/0408053) Data MC K S 3 0 0 0 20 40 80 60 40102030 Analysis Outline: Signal selection: K L crash tag + 6 prompt photons, no tracks from IP Background: K S π 0 π 0 + 2 split/accidental clusters Background rejection: compare 3 vs 2 hypotheses: pairing of 6 clusters with better 0 mass estimates best pairing of 4 ’s out of 6: 0 masses, E(K S ), P(K S ), c.m. 0 0 angle Signal BOX
31
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN K S π 0 π 0 π 0 upper limit: final result Using the PDG values and our limit we have: KLOE NA48 90 % CL N bkg = 3.13 ± 0.82 stat ± 0.37 sys N obs = 2 (events with K L tag) = 24.3% BR(K S π 0 π 0 π 0 ) < 1.2 10 -7 @ 90% CL A(K S 0 0 0 ) A(K L 0 0 0 ) | 000 | = < 1.8 10 -2, 90% CL NA48 (hep-ex/0408053) A factor 5 better than the previous limit!
32
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN K S π 0 π 0 π 0 decay and Bell-Steinberger relation: K S π 0 π 0 π 0 decay and Bell-Steinberger relation: Uncertainty on K S 3 0 amplitude enters in the Bell-Steinberger relation: K S,L = K 1,2 +( ± δ) K 2,1 (1 + i tan SW )(Re iIm f A*(K S f) A(K L f) CPTCP Exp. input ( and phases) 1ΓS1ΓS A limit on BR(K S π 0 π 0 π 0 ) 10 -7 error on Im δ 2 · 10 -5 (dominated now by η +- ) 29
33
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN Summary: NA48 What we have now: Measurements of all the dominant K L BR’s at 0.5% accuracy; Two measurements of the K L lifetime at 0.6% accuracy; Best upper limit on K S π 0 π 0 π 0 decay; First Observation of K S π decay Coming soon: Final result on K S semileptonic BR; Analysis of K L semileptonic form factor slopes; Analysis of K ±, BR’s and lifetime. 30
34
BACKUP SLIDES
35
|Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN The present data taking: NA48 Daily Lum (nb -1 ) Int Lum (pb -1 ) Peak Lum (cm -2 s -1 ) L 770 pb -1 goal is 2 fb -1 within december 2005 a factor 4 more than the present statistics Luminosity collected since may 2004: Limit on K S -> 3π 0 at the 10 -8 level K S semileptonic asymmetry to 4 × 10 -3 First interferometry studies of K S K L system Next in line:
37
The KLOE detector: Be beam pipe (0.5 mm thick) Instrumented permanent magnet quadrupoles (32 PMT’s) Drift chamber (4 m 3.3 m) 90% He + 10% IsoB, CF frame 12582 stereo sense wires Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT’s Superconducting coil (5 m bore) B = 0.52 T ( B dl = 2 T·m) e + e - |Vus| and K S decays from KLOE, G. Lanfranchi – LNF/INFN
38
K L lifetime: vertex reconstruction efficiency |Vus| and K S decays from KLOE G. Lanfranchi – LNF/INFN vertex efficiency for 3π 0 MC (%) L K (true) (cm) vertex efficiency for π + π - π 0 (data & MC) (%) MC DATA L K ( π+π-) (cm)
39
K L absolute BR’s: K L 0 0 0 KLOE photons are very low energy photons! Photon efficiency measured on data using K L π + π - π 0 events Plot dell’energia totale per 6 fotoni O della massa totale. Photon energy spectrum + DATA - Monte Carlo 7 MeV <E γ < 250 MeV |Vus| and K S decays from KLOE, G. Lanfranchi – LNF/INFN
40
000000 +-0+-0 e Effect of the tag bias: ε (tagging) L K (cm) ε (tagging) Before cuts:After cuts:
41
T(measured) = T(stop)-T(start) T(stop) = T + 1 (cables+FEE) T(start) = Ttrg + 2 (cables+FEE) + rephasing T(measured) = T + ( 2 - 1 ) - (Ttrg+ rephasing ) = T + T0 The t 0 of the event:
42
T(measured) = T(stop)-T(start) T(stop) = T + 1 (cables+FEE) T(start) = Ttrg + 2 (cables+FEE) + rephasing T(measured) = T + ( 2 - 1 ) - (Ttrg+ rephasing ) = T + T0 In the simplest case of a photon we have: T = L/c T measured -L/c = T0 For each event we have to find one particle that can fix the T0 for that event ! The t 0 of the event:
43
S π 0 π 0 π 0 search: background calibration A good agreement is observed in each scatter plot region DATA -- MC ALL 2 2 >40 2 2 <14 2 2 <40 ALL 2323 2323 2323 2323
44
S π 0 π 0 π 0 search: background calibration A good agreement is observed in each scatter plot region DATA -- MC ALL 2 3 <4 2 3 >4 ALL 2222 2222 2222
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.