Download presentation
Presentation is loading. Please wait.
Published byEsther Cook Modified over 9 years ago
1
John Herbert Department of Chemistry The Ohio State University Anion–water vs. electron–water hydrogen bonds 61 st Molecular Spectroscopy Symposium 6/23/06
2
Related work at this meeting X – (H 2 O) theory: Anne McCoy, Samantha Horvath (RA08) X – (H 2 O) & e – (H 2 O) n expt: Mark Johnson, Rob Roscioli (FA10), Joe Bopp (FA11), Jeff Headrick (FA05)
3
Vibrational spectroscopy of e – (H 2 O) n Bend spectra AA bend redshifted by ≈50 cm –1 H-bonded bends in (H 2 O) n blueshifted w.r.t. H 2 O Expt: Hammer et al., Science 306, 675 (2004) Theory: B3LYP/aug3-cc-pVDZ (scaled harmonic) H2OH2O intensity HOH bend spectrum / cm –1 Latest expts.: J.R. Roscioli & J.C. Bopp FA10 & FA11
4
Stretch spectra AA symm/asymm stretch redshifted by ≈300 cm –1 Very intense w.r.t. H-bonded OH stretches / cm –1 OD stretch spectrum H2OH2O Expt: Hammer et al., Science 306, 675 (2004) Theory: B3LYP/aug3-cc-pVDZ (scaled harmonic) intensity Vibrational spectroscopy of e – (H 2 O) n Latest expts.: J.R. Roscioli & J.C. Bopp FA10 & FA11
5
Vibrational spectroscopy of X – (H 2 O) Roscioli, Diken, Johnson, Horvath, McCoy; J. Phys. Chem. A 110, 4943 (2006) Anion H + affinity (kJ/mol) Observed redshift (cm –1 ) OH stretch freqs H-bond = 1523 cm –1 free = 3687 cm –1
6
n —› * charge transfer B3LYP/6-31++G* NBOs F lone pair 1.88e (B3LYP) 1.91e (Hartree-Fock) OH * 0.11e (B3LYP) 0.09e (Hartree-Fock) E D-›A = 64 kcal/mol (B3LYP) = 80 kcal/mol (Hartree-Fock)
7
NBO analysis of e – (H 2 O) n Diffuse functions allow atoms to overlap at great distance e – cannot be tagged to one particular atom Sol’n: Use compact basis set, in conjunction with a ghost atom
8
NBO analysis of e – (H 2 O) n B3LYP/6-31++G*-f(2+) NBOs *(OH) 0.16e *(OH) 0.10e Ry*(Gh) 0.13e Ry*(H) 0.36e Ry*(H) 0.15e Diffuse functions allow atoms to overlap at great distance e – cannot be tagged to one particular atom Sol’n: Use compact basis set, in conjunction with a ghost atom
9
NBO analysis of e – (H 2 O) n Donor– acceptor interaction Stabilization energy (kcal/mol) n —› *10.8 n —› *7.1 n —› *7.2 e — —› *36.3 e — —› *6.7 e — —› Ry*8.8 e — —› Ry*6.3 e — —› Ry*2.9 e — —› Ry*2.8 W–W H-bonds e — –W H-bonds B3LYP/6-31++G*-f(2+) NBOs *(OH) 0.16e *(OH) 0.10e Ry*(Gh) 0.13e Ry*(H) 0.36e Ry*(H) 0.15e
10
NBO analysis of e – (H 2 O) n HF/6-31++G*-f(2+) NBOs Donor– acceptor interaction Stabilization energy (kcal/mol) n —› *11.6 n —› *8.8 n —› *6.4 Gh —› Ry*8.0 Gh —› Ry*5.3 Gh —› *4.0 Gh —› *3.3 –› Gh3.0 n (Gh) 0.91e W–W H-bonds
11
O–H * occupancies B3LYP/6-31++G*-f(2+) = 0.164 = 0.001 = 0.096 = 0.001 = 0.006 = 0.000 = 0.021 = 0.014 = 0.011 = 0.011
12
O–H * occupancies B3LYP/6-31++G*-f(2+) = 0.164 = 0.001 = 0.096 = 0.001 = 0.006 = 0.000 = 0.021 = 0.014 = 0.011 = 0.011 HF/6-31++G*-f(2+) = 0.005 = 0.000 = 0.012 = 0.000 = 0.000 = 0.000 = 0.009 = 0.009 = 0.007 = 0.007
13
Vibrational spectra: e – (H 2 O) 4 B3LYP/aug3-cc-pVDZ Hartree-Fock/aug3-cc-pVDZ / cm –1 intensity Scaled harmonic freqs
14
Vibrational spectra: e – (H 2 O) 4 B3LYP/aug3-cc-pVDZ Hartree-Fock/aug3-cc-pVDZ / cm –1 intensity Scaled harmonic freqs AA symm str
15
Vibrational spectra: e – (H 2 O) 4 B3LYP/aug3-cc-pVDZ Hartree-Fock/aug3-cc-pVDZ / cm –1 intensity Scaled harmonic freqs AA asymm str
16
Vibrational spectra: e – (H 2 O) 4 B3LYP/aug3-cc-pVDZ Hartree-Fock/aug3-cc-pVDZ / cm –1 intensity Scaled harmonic freqs H-bonded str
17
Vibrational spectra: (H 2 O) 6 – “AA” “book” / cm –1 intensity B3LYP/aug3-cc-pVDZ scaled harmonic
18
AA symm stretch in e – (H 2 O) 6 ∆(spin density) potential (cm –1 ) B3LYP/6-31++G*-f(2+) AA + Gh spin density 0.82–0.89e (v=0) 0.80–0.90e (v=1) ∆Q (AA symm str)
19
F – (H 2 O) revisited F ‹–› O chg. transfer 0.1e (v=0) 0.2e (v=1) r (O–H) / Å potential (cm –1 ) ∆(charge) q (O) q (F) B3LYP/6-31++G*
20
F – (H 2 O) revisited r (O–H) / Å q (O) q (F) NBO occupancy *(OH) *(FH) r (O–H) / Å F —... HOH FH... — OH B3LYP/6-31++G* ∆(charge) potential (cm –1 )
21
To summarize a very simple story: e – –› * charge transfer in e – (H 2 O) n is comparable to n –› * charge transfer in F – (H 2 O) More significant redshift in F – (H 2 O) arises from low-lying FH... – OH diabatic state
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.