Download presentation
Presentation is loading. Please wait.
Published byFerdinand O’Connor’ Modified over 9 years ago
1
Laboratory of Image Processing Pier Luigi Mazzeo pierluigi.mazzeo@cnr.it
2
Filtering
3
Neighbourhood processing
4
Mean
5
Filtering in MatLab
6
filter2
7
filter2 (cont.)
8
fspecial (low pass filters) Produce an Average filtering image using 9x9 filter and a 25x25 filter
9
>> hsize = 10; >> sigma = 5; >> h = fspecial(‘gaussian’ hsize, sigma); >> mesh(h); >> imagesc(h); >> outim = imfilter(c, h); >> imshow(outim); fspecial (low pass filters)
10
for sigma=1:3:10 h = fspecial('gaussian‘, fsize, sigma); out = imfilter(c, h); imshow(out); pause; end fspecial (low pass filters)
11
>> noise = randn(size(c)).*sigma; >> output = c+ noise; Noise Periodic noise
12
Cleaning salt and pepper noise
13
fspecial (high pass filters)
15
Unsharp masking Find the image ‘pelicans.tif’ from internet and use u filter >> My = fspecial(‘sobel’); >> outim = imfilter(double(c), My); >> imagesc(outim); >> colormap gray;
16
Canny edge detector MATLAB: edge(c, ‘canny’); >>help edge I = imread('circuit.tif'); BW1 = edge(I,'prewitt'); BW2 = edge(I,'canny'); figure, imshow(BW1) figure, imshow(BW2)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.