Download presentation
Presentation is loading. Please wait.
Published byPeregrine Casey Modified over 8 years ago
1
CSCE 3110 Data Structures & Algorithm Analysis More on lists. Circular lists. Doubly linked lists.
2
Applications of Linked Lists Stacks and Queues Implemented with Linked Lists Polynomials Implemented with Linked Lists Remember the array based implementation? Hint: two strategies, one efficient in terms of space, one in terms of running time
3
Operations on Linked Lists Running time? insert, remove traverse, swap How to reverse the elements of a list?
4
typedef struct poly_node *poly_pointer; typedef struct poly_node { int coef; int expon; poly_pointer next; }; poly_pointer a, b, c; coef expon link Representation Polynomials
5
3 14 2 8 1 0 a 8 14 -3 10 10 6 b null Example
6
3 14 2 8 1 0 a 8 14 -3 10 10 6 b 11 14 d a->expon == b->expon 3 14 2 8 1 0 a 8 14 -3 10 10 6 b 11 14 d a->expon expon -3 10 Adding Polynomials
7
3 14 2 8 1 0 a 8 14 -3 10 10 6 b 11 14 a->expon > b->expon -3 10 d 2 8 Adding Polynomials (cont’d)
8
poly_pointer padd(poly_pointer a, poly_pointer b) { poly_pointer front, rear, temp; int sum; rear =(poly_pointer)malloc(sizeof(poly_node)); if (IS_FULL(rear)) { fprintf(stderr, “The memory is full\n”); exit(1); } front = rear; while (a && b) { switch (COMPARE(a->expon, b->expon)) { Adding Polynomials (cont’d)
9
case -1: /* a->expon expon */ attach(b->coef, b->expon, &rear); b= b->next; break; case 0: /* a->expon == b->expon */ sum = a->coef + b->coef; if (sum) attach(sum,a->expon,&rear); a = a->next; b = b->link; break; case 1: /* a->expon > b->expon */ attach(a->coef, a->expon, &rear); a = a->next; } for (; a; a = a->next) attach(a->coef, a->expon, &rear); for (; b; b=b->next) attach(b->coef, b->expon, &rear); rear->next = NULL; temp = front; front = front->next; free(temp); return front; }
10
(1)coefficient additions 0 additions min(m, n) where m (n) denotes the number of terms in A (B). (2)exponent comparisons extreme case e m-1 > f m-1 > e m-2 > f m-2 > … > e 0 > f 0 m+n-1 comparisons (3)creation of new nodes extreme case m + n new nodes summaryO(m+n) Analysis
11
Other types of lists: Circular lists Doubly linked lists
12
3 14 2 8 1 0 ptr circular Circularly linked lists
13
X 1 X 2 X 3 a What happens when we insert a node to the front of a circular linked list? Problem: move down the whole list. Operations in a circular list X 1 X 2 X 3 a Keep a pointer points to the last node. A possible solution:
14
void insertFront (pnode* ptr, pnode node) { /* insert a node in the list with head (*ptr)->next */ if (IS_EMPTY(*ptr)) { *ptr= node; node->next = node; /* circular link */ } else { node->next = (*ptr)->next; (1) (*ptr)->next = node; (2) } X 1 X 2 X 3 (1) (2) ptr Insertion
15
int length(pnode ptr) { pnode temp; int count = 0; if (ptr) { temp = ptr; do { count++; temp = temp->next; } while (temp!=ptr); } return count; } List length
16
Doubly Linked List Keep a pointer to the next and the previous element in the list typedef struct node *pnode; typedef struct node { char data [4]; pnode next; pnode prev; }
17
Doubly Linked List Keep a header and trailer pointers (sentinels) with no content header.prev = null; header.next = first element trailer.next = null; trailer.prev = last element Update pointers for every operation performed on the list How to remove an element from the tail of the list ?
18
Doubly Linked List – removeLast() Running time? How does this compare to simply linked lists?
19
Doubly Linked List insertFirst swapElements
20
Previous scheme: represent each non-NULL element as a tuple (row, column, value) New scheme: each column (row): a circular linked list with a head node Revisit Sparse Matrices
21
down right value row col a ij ij entry node a ij Nodes in the Sparse Matrix
22
4 4 1 0 12 2 1 -4 0 2 11 3 3 -15 1 1 5 Circular linked list Linked Representation
23
#define MAX_SIZE 50 /* size of largest matrix */ typedef struct mnode *pmnode; typedef struct mnode { int row; int col; int value; pmnode next, down; }; Sparse Matrix Implementation
24
Operations on Sparse Matrices Transpose Addition Multiplication
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.