Presentation is loading. Please wait.

Presentation is loading. Please wait.

Credit Revision Chapters 5 - 8 Pythagoras and Trig Right-angled Triangles.

Similar presentations


Presentation on theme: "Credit Revision Chapters 5 - 8 Pythagoras and Trig Right-angled Triangles."— Presentation transcript:

1

2 Credit Revision Chapters 5 - 8

3 Pythagoras and Trig Right-angled Triangles

4 E.g. Find the length of each missing side. (to 1 dp) 5cm 3cm a 8cm 10cm c a 2 = 5 2 + 3 2 a 2 = 34 5.8a =  34 = c 2 = 10 2 - 8 2 c 2 = 36 6c =  36 =

5 Ex Find the length of each missing side. (to 1 dp) x 12cm 18cm 6cm y 4cm x 2 = 18 2 - 12 2 x 2 = 180 13.4x =  180 = y 2 = 4 2 + 6 2 y 2 = 52 7.2y =  52 =

6 E.g.Find the missing values hyp SOH CAH TOA 35º x 4m   opp adj opp hyp adj SOH CAH TOA  5 y° 14 

7 Problem 1Find x opp hyp adj SOH CAH TOA  93m x° 20m 

8 Problem 2 Find x hyp SOH CAH TOA  7 cm 37° x cm  adj opp

9 Problem 3 Ship A leaves the harbour and sails North at 15km/h Ship B leaves the harbour and sails East at 30km/h. After 3 hours how far apart are the two ships? hyp 2 = b 2 + c 2 AB 2 = 45 2 + 90 2 x 2 = 2025 + 8100 x 2 = 10125 x =  10125 = 100.6km H A B 45km 90km

10 Problem 4Find the Perimeter 42  16m 6m x y opp hyp adj SOH CAH TOA   y 2 = 8 2 + 6 2 y =  100 y = 10 P = 22.3 + 22.3 + 10 + 10 P = 64.6m

11 Factorising Remember the three cases?

12 Factorise each of the following fully 1.18x – 12y2.4x 2 – 363.2x 2 + 10x + 12 6(3x – 2y)4(x 2 – 9)2(x 2 + 5x + 6) 4(x  3)(x + 3) STEP 1 – COMMON FACTOR STEP 2 – DIFFERENCE OF TWO SQUARES STEP 3 – TWO BRACKETS 2(x + 2)(x + 3)

13 1.12x – 14y2.4x 2 – 6x3.15a 2 b + 12a 3 b 2(6x – 7y)(2x – 3)2x E.g.STEP 1 – COMMON FACTORS 3a 2 b(5 + 3a) 1.20x – 15y2.13y 2 – 7y3.12m 2 n – 8mn 2 5(4x – 3y)(13y – 7)y ExSTEP 1 – COMMON FACTORS 4mn(3m – 2n)

14 1.100 – y 2 2.4x 2 – 9y 2 3.2a 2 – 18 (10 + y)(10 – y)(2x – 3)(2x + 3y) E.g.STEP 2 – DIFFERENCE OF TWO SQUARES 2(a 2 – 9) 2(a + 3)(a – 3) 1.x 2 – 492.m 2 – 81n 2 3.ax 2 – ay 2 (x + 7)(x – 7)(m – 9n)(m + 9n) ExSTEP 2 – DIFFERENCE OF TWO SQUARES a(x 2 – y 2 ) a(x – y)(x + y)

15 1.x 2 + 8x + 122.x 2 – 3x – 403.a 2 – 7a + 10 (x + 6)(x + 2)– +(x 8)(x 5) E.g.STEP 3 – TWO BRACKETS (a 5)(a 2) – – 1.x 2 + 9x + 182.x 2 + 2x – 243.a 2 – 5a – 24 (x + 6)(x + 3)– +(x 4)(x 6) ExSTEP 3 – TWO BRACKETS (a 3)(a 8) + –

16 Factorise each of the following fully 1.4x – 6y2.x 2 – 93.x 2 + 8x + 15 4.2x 2  85.y 2  2y  24 6.8y 2 + 20y 2(2x – 3y)(x – 3)(x + 3)(x + 5)(x + 3) 2(x 2  4) 2(x + 2)(x – 2) (y  6)(y + 4) 4y(2y + 5)

17 Factorise each of the following fully 7.4x 2 – 498.5x 2 – 5009.x 2 - 9x + 8 10.x 2 y  y 3 11.3y 2  3y  60 12.14xy 2 + 20x 2 y 3 (2x – 7)(2x + 7)5(x 2 – 100) (x - 8)(x - 1) y(x 2  y 2 ) y(x + y)(x – y) 3(y 2  y  20) 2xy 2 (7 + 10xy) 5(x – 10)(x + 10) 3(y  5)(y + 4)

18 Factorise each of the following fully 13.2ax 2 – 72a14.81 – 25h 2 15.4x 2 - 12x - 40 16.3x 2 y + 12y 3 17. 2a 2 + 12a + 10 18.y 2 + x 2 2a(x 2 – 36) 4(x 2 – 3x  10) 3y(x 2 + 4y 2 )2(a 2 + 6a + 5) (9 – 5h)(9 + 5h) 2(a + 5)(a + 1) 2a(x – 6)(x + 6) 4(x – 5)(x + 2)

19 Try and Factorise each of the following 19.2x 2 + 11x + 1220.3x 2 + 14x + 8 21. 3a 2  26a + 16 22.2y 2  17y + 8 (2x + 3)(x + 4) 2x x 4 3 x 6 2 x 3 4 (3x + 2)(x + 4) 3x x 1 8 x 8 1 x 2 4 (3a  2)(a  8) 3a a -8 -2 3a a -2 -8 (2y  1)(y  8) 2y y -4 -2 2y y -2 -4 2y y -8

20 Try and Factorise each of the following 23.3x 2 + 13x  1024.2x 2  15x  8 25. 4a 2 + 16a + 15 26.6y 2 + 17y + 10 (3x  2)(x + 5) 3x x -5 2 3x x 5 -2 3x x -2 5 (2x + 1)(x  8) 2x x 2 -4 2x x 1 -8 (2a + 5)(2a + 3) 4a a 15 1 4a a 5 3 (6y + 5)(y + 2) 3y 2y 5 2 3y 2y 2 5 6y y 5 2 2a 5 3

21 Try and Factorise each of the following 27.6x 2 + x  1228.10x 2 + 13x  3 29. 6x 2  17x + 10 30.y 2 + 10y + 21 (3x  4)(2x + 3) 3x 2x 4 -3 3x 2x -4 3 (5x  1)(2x + 3) 5x 2x 1 -3 5x 2x 3 (6x  5)(x  2) 3x 2x -10 6x x -5 -2 (y + 7)(y + 3) y y 7 3

22 Solving Inequations Remember negative multipliers

23 E.g. 1E.g. 2 4x + x > 13 + 2 5x > 15 x > 3 4x - 2 > 13 - x 2x - 3  6x + 25 2x - 6x  25 + 3 -4x  28 x  -7

24 Question 1Question 2 5x - 3x < 10 - 2 2x < 8 x < 4 5x + 2 < 3x + 10 7x - 1  4x + 20 7x - 4x  20 + 1 3x  21 x  7

25 Question 3Question 4 5x + 20 > 3x + 6 5x - 3x > 6 - 20 2x > -14 x > -14 / 2 5(x + 4) > 3(x + 2) x > -7 3(x - 5) < -4(1 - x) 3x - 15 < -4 + 4x 3x - 4x < -4 + 15 -x < 11 x > 11 / -1 x > -11

26 Question 5Question 6 9x - 4  3x + 6 + 4 9x - 3x  10 + 4 6x  14 x  14 / 6 9x - 4  3(x + 2) + 4 x  7 / 3 3(2 - 5x) > -13 - 7x 6 - 15x > -13 - 7x -15x + 7x > -13 - 6 -8x > 19 x < 19 / -8 9x - 4  3x + 10 x < -2 3 / 8

27 Question 7Question 8 5x - 10 = -3x - 12 5x + 3x = -12 + 10 8x = -2 x = -2 / 8 5(x - 2) = -3(x + 4) x = -1 / 4 3(x + 4) < -4(5 - 2x) 3x +12 < -20 + 8x 3x - 8x < -20 - 12 -5x < -32 x > -32 / -5 x > 6 2 / 5


Download ppt "Credit Revision Chapters 5 - 8 Pythagoras and Trig Right-angled Triangles."

Similar presentations


Ads by Google