Download presentation
Presentation is loading. Please wait.
Published byDayna Pierce Modified over 9 years ago
1
Scrubbing Query Results from Probabilistic Databases Jianwen Chen, Ling Feng, Wenwei Xue
2
A skeleton of scrubbing probabilistic database query results
3
Three probabilistic relation examples
4
Query 1: look for the year(s) where at least one movie was liked by people from northern regions The user gets the following answer from the probabilistic database: User: Where is the probability derived? System: It is based on the two assumptions: Pr(x 4 ) = 0.9 and Pr(x 5 ) = 0.2 User: I think the movie of MovieID = 4 is not actually liked by people from northern regions. Pr(x 4 ) should be 0.1 but not 0.9! System: The new probability is 0.28! How to identify the top-k uncertain assumptions for user clarification? How to recompute the probability?
5
Pr(ee) =Pr(x4 ∨ x5) =Pr(x4) + Pr(x5) – Pr(x4) * Pr(x5) =0.9 + 0.2 – 0.9 * 0.2 = 0.92 Top-k assumptions Pr(ee) =Pr(x 4 ∨ x 5 ) =Pr(x 4 ) + Pr(x 5 ) – Pr(x 4 ) * Pr(x 5 ) =0.1 + 0.2 – 0.1 * 0.2 = 0.28 0.1 EventIDProb.Rate x40.90.8 x50.20.1
6
Basic algorithm to compute top-k assumptions For an event expression ee, to compute its probability Pr(ee), one can first convert it into an equivalent disjunctive normal form, and then apply the inclusion-exclusion formula. disjunctive norm form: ee = C 1 ∨ C 2 ∨ … ∨ C m where C 1 = e 11 ∧ e 12 ∧ … ∧ e 1 s1, C 2 = e 21 ∧ e 22 ∧ … ∧ e 2 s2,..., C m = e m1 ∧ e m2 ∧ … ∧ e m sm, m ≥1, s1,s2,…,sm≥1 inclusion-exclusion formula:
7
Basic algorithm to compute top-k assumptions To computeone can rewrite Pr(ee) as Pr(ee)=α*Pr(e i )+β where α and β are two sub-expressions irrelevant to Pr(e i ) and The time complexity is O(2 m ), where m is the number of conjuncts in the disjunctive normal form of ee.
8
Optimization Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. VLDB Journal 16(4) (2007) 523–544 We restrict the event expression ee to the situation where basic events e1,e2, …, en are independent and moreover they do not occur repeatedly in ee, which can be obtained for most of the queries (80% of the TPC/H queries ) by using the well-researched optimization technique adopted in
9
Three probabilistic relation examples
10
Query 2: look for the year(s) where at least one movie was liked by people from northern regions but not by people from southern regions The user gets the following answer from the uncertain database:
11
ee=(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(e 1 )=0.2 Pr(e 2 )=0.7 Pr(e 3 )=0.1 Pr(e 4 )=0.9 Pr(e 5 )=0.7 Pr(e 6 )=0.2 Pr(ee)? Pr(~ee) = 1 –Pr(ee) Pr(ee 1 ∧ ee 2 ) = Pr(ee 1 ) * Pr(ee 2 ) Pr(ee 1 ∨ ee 2 ) = Pr(ee 1 ) + Pr(ee 2 ) – Pr(ee 1 ) * Pr(ee 2 ) Pr(ee)=f(Pr(e 1 ),Pr(e 2 ),…,Pr(e 6 ))
13
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(e 1 )=0.2 Pr(e 2 )=0.7 Pr(e 3 )=0.1 Pr(e 4 )=0.9 Pr(e 5 )=0.7 Pr(e 6 )=0.2 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.7 =0.3 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.2*0.3 =0.06 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.06+0.01-0.06*0.01 =0.0694 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.1*0.1 =0.01 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.2 =0.8 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.7*0.8 =0.56 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.9 =0.1
14
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(e 1 )=0.2 Pr(e 2 )=0.7 Pr(e 3 )=0.1 Pr(e 4 )=0.9 Pr(e 5 )=0.7 Pr(e 6 )=0.2 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.7 =0.3 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.2*0.3 =0.06 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.06+0.01-0.06*0.01 =0.0694 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.1*0.1 =0.01 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.2 =0.8 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.7*0.8 =0.56 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.9 =0.1
15
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.7 =0.3 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.2*0.3 =0.06 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.06+0.01-0.06*0.01 =0.0694 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.1*0.1 =0.01 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.2 =0.8 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.7*0.8 =0.56 Pr(ee(N)) =1-Pr(ee(leftChild(N))) =1-0.9 =0.1
16
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.2*0.3 =0.06 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.06+0.01-0.06*0.01 =0.0694 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.1*0.1 =0.01 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591 Pr(ee(N)) =Pr(ee(leftChild(N))) *Pr(ee(rightChild(N))) =0.7*0.8 =0.56
17
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.06+0.01-0.06*0.01 =0.0694 Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591
18
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) Pr(ee(N)) =Pr(ee(leftChild(N)))+Pr(ee(rightChild(N))) -Pr(ee(leftChild(N)))*Pr(ee(rightChild(N))) =0.0694+0.56-0.0696*0.56 =0.591
19
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 )
20
Second Optimization
21
(e 1 ∧ ~e 2 ) ∨ (e 3 ∧ ~e 4 ) ∨ (e 5 ∧ ~e 6 ) top-2 assumptions
22
Scrub the query result Recompute Pr((e 1 ∧~ e 2 ) ∨ (e 3 ∧~ e 4 ) ∨ (e 5 ∧~ e 6 )) with modified Pr(e 2 ) and pr(e 5 )
23
Performance Study
25
Conclusion
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.