Download presentation
Presentation is loading. Please wait.
Published byNelson Butler Modified over 9 years ago
2
Time independent H o o = E o o Time dependent [H o + V(t)] = iħ / t Harry Kroto 2004 Time dependent Schrödinger [H o + V(t)] = iħ / t
4
Atoms Molecules Basically only electronic transitions >10000 cm -1 Harry Kroto 2004
5
C We have to solve the Time independent problem H o o = E o o Harry Kroto 2004
6
Atoms Molecules Basically only electronic transitions >10000 cm -1 electronic transitions E > 10000 cm -1 Vibrational transitions E = 100-10000 cm -1 Rotational transitions E = 0.1 – 100 cm -1 Harry Kroto 2004
7
The Born-Oppenheimer Separation H = E H = H el + H vib + H rot + … Harry Kroto 2004
8
The Born-Oppenheimer Separation H = E H = H el + H vib + H rot + … = el vib rot … = i i Harry Kroto 2004
9
The Born-Oppenheimer Separation H = E H = H el + H vib + H rot + … = el vib rot … = i i E = E el + E vib + E rot +… E= i E i Harry Kroto 2004
10
The Born-Oppenheimer Separation H = E H = H el + H vib + H rot + … = el vib rot … = i i E = E el + E vib + E rot +… E= i E i We shall often use Dirac notation m m and m * n Harry Kroto 2004
12
Time independent H o o = E o o Harry Kroto 2004
13
Time independent H o o = E o o Stationary States m o m Harry Kroto 2004
14
Time independent H o o = E o o Stationary States m o m m o Harry Kroto 2004
15
D Selection Rules Need to solve the Time Dependent Problem Harry Kroto 2004
16
Time independent H o o = E o o Stationary States m o m Time dependent [H o + V(t)] = iħ / t m o Harry Kroto 2004
17
Time independent H o o = E o o Stationary States m o m Time dependent [H o + V(t)] = iħ / t V(t) = -E e (t) e m o Harry Kroto 2004
18
Time independent H o o = E o o Stationary States m o m Time dependent [H o + V(t)] = iħ / t V(t) = -E e (t) e E e (t) = E e o cos 2 t E e (t) Radiation field e Electric dipole moment m o Harry Kroto 2004
19
Time independent H o o = E o o Stationary States m o m Time dependent [H o + V(t)] = iħ / t V(t) = -E e (t) e E e (t) = E e o cos 2 t E e (t) Radiation field e Electric dipole moment = m a m (t) m m o Harry Kroto 2004
23
Fermi’s Golden Rule IoIo I xx l Harry Kroto 2004
24
Fermi’s Golden Rule IoIo I xx l Beer Lambert Law I= I o e - l Harry Kroto 2004
25
Fermi’s Golden Rule IoIo I xx l Beer Lambert Law I= I o e - l Harry Kroto 2004
26
Fermi’s Golden Rule Beer Lambert Law I= I o e - l IoIo I xx l Harry Kroto 2004
27
Fermi’s Golden Rule Beer Lambert law I= I o e - l IoIo I xx l Harry Kroto 2004
28
Fermi’s Golden Rule Beer Lambert law I= I o e - l is the absorption coefficient = (8 3 /3hc) n e m 2 (N m -N n ) ( o - ) IoIo I xx l Harry Kroto 2004
29
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) Harry Kroto 2004
30
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) ① 1.Square of the transition moment n e m 2 Harry Kroto 2004
31
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) ① ② 1.Square of the transition moment n e m 2 2.Frequency of the light Harry Kroto 2004
32
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) ① ② ③ 1.Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) Harry Kroto 2004
33
= (4 /3ħc) n e m 2 (N m -N n ) ( o - ) ① ② ③ ④ 1.Square of the transition moment n e m 2 2.Frequency of the light 3.Population difference (N m - N n ) 4.Resonance factor - Dirac delta function (0) = 1 Harry Kroto 2004
34
C Solution > Energy Levels For the H atom we shall just use the Bohr result E(n) = - R/n 2 DSelection Rules n no restriction l = ±1 ETransition Frequencies E = - R[ 1/n 2 2 – 1/n 1 2 ] Harry Kroto 2004
43
Hot gas cloud – the famous Orion Nebulae At the centre is the Trapezium Cluster of very hot new stars Harry Kroto 2004
44
Collisions in the Interstellat Medium ISM In space the pressures are low Very low If n = number of molecules per cc (mainly H) then 2b = 10 3 /n yrs per collision 3b = 10 23 /n 2 yrs per collision Number densities are anything from n = 1-1000 Harry Kroto 2004
45
B n<-m Einstein Coefficients nn mm Harry Kroto 2004
46
B n<-m B n->m nn mm Einstein Coefficients Harry Kroto 2004
47
A n->m / B n->m = 8 h 3 /c 3 B n<-m B n->m A n->m nn mm Einstein Coefficients Harry Kroto 2004
48
A = 1.2 x 10 -37 3 n e m 2 transitions per sec Spontaneous emission lifetime (sec) = 1/A = 10 37 / 3 sec B n<-m B n->m A n->m nn mm Einstein Coefficients Harry Kroto 2004
49
(sec) = 10 37 / 3 (cm -1 ) (Hz) 3 (Hz 3 ) (sec) H (1420 MHz) 21cm 0.05 1.5x10 9 3x10 27 10 10 * H 2 CO rotations 1cm 1 3 x 10 10 3x10 31 10 6 CO 2 vibrations 10 10 3 3 x 10 13 3 x 10 40 10 -3 Na D electronic 500nm2x10 4 1.5 x 10 14 6 x 10 44 10 -7 H Lyman 100nm 10 5 3 x 10 15 3 x 10 46 10 -9 Calculations assume e = 1Debye 1yr = 3 x 10 7 sec * magnetic dipole Harry Kroto 2004
51
a n = a o n 2 a o = 0.05 nm Bohr radius Harry Kroto 2004
52
a n = a o n 2 a o = 0.05 nm Calculate a 10, a 100 and a 300 in cm Bohr radius Harry Kroto 2004
53
a n = a o n 2 a o = 0.5 Å (1Å = 10 -8 cm) a 300 = 0.5x10 -3 cm = 0.005 mm Bohr radius Harry Kroto 2004
55
Nitrosoethane Harry Kroto 2004
56
What can molecules do Harry Kroto 2004
57
What can molecules do 2 Harry Kroto 2004
58
What can molecules do 2 Harry Kroto 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.