Presentation is loading. Please wait.

Presentation is loading. Please wait.

November 24, 2008. 15) Horizontal: y=4, vertical, x=2, D: x≠2 16) H: y= 2, V: x=4 and x= -4, D: x≠4 and x≠-4 17) H: y=-4, V: x= -2, x=2, D: x≠2, x≠2 18)

Similar presentations


Presentation on theme: "November 24, 2008. 15) Horizontal: y=4, vertical, x=2, D: x≠2 16) H: y= 2, V: x=4 and x= -4, D: x≠4 and x≠-4 17) H: y=-4, V: x= -2, x=2, D: x≠2, x≠2 18)"— Presentation transcript:

1 November 24, 2008

2 15) Horizontal: y=4, vertical, x=2, D: x≠2 16) H: y= 2, V: x=4 and x= -4, D: x≠4 and x≠-4 17) H: y=-4, V: x= -2, x=2, D: x≠2, x≠2 18) H: y=-2, V: x=-4, D: x≠-4

3 25) H: none, V: x= -5 or x= 2 26) H: none, V: x= -2 27) H: y= ½, V: x= 5/2 28) H: y= 3, V: x= 3/2 or -2 29) H: y=3, V: x=1 30) H: y= 0, V: x= -1 or 1 31) H: none, V: none 32) H: none, V: none

4 85) -1 86) No real solutions 87) 13/8 88) -2.55 89) ±√2 90) No real solutions 91) No real solutions 92) -1 or 2

5  Solve polynomial inequalities  Solve rational inequalities

6  Rewrite the inequality so that zero is alone  Solve the inequality as if it were an equation  Use the boundary number (the solutions you just found) to separate possible solutions into intervals  Use test values or a graph to determine which intervals are greater or less than zero

7 x 3 +7x 2 +12x>0 intervalTest value + or -

8  Write the inequality in the form of a ratio. p(x) q(x)  Solve for p(x)=0 and q(x)=0  The numbers are your boundary numbers  Discover which intervals are positive and negative

9 1> 2 xx+1 intervalTest value + or -

10 Page 332-33 #13-24 (algebraically only) #29-35 (algebraically only)


Download ppt "November 24, 2008. 15) Horizontal: y=4, vertical, x=2, D: x≠2 16) H: y= 2, V: x=4 and x= -4, D: x≠4 and x≠-4 17) H: y=-4, V: x= -2, x=2, D: x≠2, x≠2 18)"

Similar presentations


Ads by Google