Download presentation
Presentation is loading. Please wait.
Published byGeorgina Violet Perry Modified over 9 years ago
1
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Seventh Edition Elaine N. Marieb Chapter 7 The Nervous System
2
Functions of the Nervous System Slide 7.1a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings 1. Sensory input – gathering information To monitor changes occurring inside and outside the body (changes = stimuli) 2. Integration – to process and interpret sensory input and decide if action is needed. 3. Motor output A response to integrated stimuli The response activates muscles or glands
3
Structural Classification of the Nervous System Slide 7.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Central nervous system (CNS) Brain Spinal cord Peripheral nervous system (PNS) Nerve outside the brain and spinal cord connecting the CNS to the organs or tissues
4
Functional Classification of the Peripheral Nervous System Slide 7.3a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Sensory (afferent) division Nerve fibers that carry information to the central nervous system Figure 7.1
5
Functional Classification of the Peripheral Nervous System Slide 7.3b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Motor (efferent) division Nerve fibers that carry impulses away from the central nervous system Figure 7.1
6
Functional Classification of the Peripheral Nervous System Slide 7.3c Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Motor (efferent) division Two subdivisions Somatic nervous system = voluntary Autonomic nervous system = involuntary Figure 7.1
7
Organization of the Nervous System Slide 7.4 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 7.2
8
Somatic System Nerves to/from spinal cord – control muscle movements Both Voluntary and reflex movements Skeletal Reflexes – simplest is spinal reflex arc Muscle Motor Neuron Interneuron Skin receptors Sensory Neuron Brain
9
Autonomic System Two divisions: – sympathetic – Parasympatheitic Control involuntary functions – heartbeat – blood pressure – respiration – perspiration – digestion Can be influenced by thought and emotion
10
Sympathetic “ Fight or flight” response Release adrenaline and noradrenaline Increases heart rate and blood pressure Increases blood flow to skeletal muscles Inhibits digestive functions CENTRAL NERVOUS SYSTEM Brain Spinal cord SYMPATHETIC Dilates pupil Stimulates salivation Relaxes bronchi Accelerates heartbeat Inhibits activity Stimulates glucose Secretion of adrenaline, nonadrenaline Relaxes bladder Stimulates ejaculation in male Sympathetic ganglia Salivary glands Lungs Heart Stomach Pancreas Liver Adrenal gland Kidney
11
Parasympathetic “ Rest and digest ” system Calms body to conserve and maintain energy Lowers heartbeat, breathing rate, blood pressure CENTRAL NERVOUS SYSTEM Brain Spinal cord Stimulates salivation Constricts bronchi Slows heartbeat Stimulates activity Contracts bladder Stimulates erection of sex organs Stimulates gallbladder Gallbladder Contracts pupil
12
Summary of autonomic differences Autonomic nervous system controls physiological arousal Sympathetic division (arousing) Parasympathetic division (calming) Pupils dilate EYES Pupils contract Decreases SALVATION Increases Perspires SKIN Dries Increases RESPERATION Decreases Accelerates HEART Slows Inhibits DIGESTION Activates Secrete stress hormones ADRENAL GLANDS Decrease secretion of stress hormones
13
Nervous Tissue: Support Cells (Neuroglia or Glia) Slide 7.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Astrocytes Abundant, star-shaped cells Brace neurons Form barrier between capillaries and neurons Control the chemical environment of the brain (CNS) Figure 7.3a
14
Nervous Tissue: Support Cells Slide 7.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Microglia (CNS) Spider-like phagocytes Dispose of debris Ependymal cells (CNS) Line cavities of the brain and spinal cord Circulate cerebrospinal fluid Figure 7.3b, c
15
Nervous Tissue: Support Cells Slide 7.7a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Oligodendrocytes (CNS) Produce myelin sheath around nerve fibers in the central nervous system Figure 7.3d
16
Neuroglia vs. Neurons Neuroglia divide. Neurons do not. Most brain tumors are “ gliomas. ” Most brain tumors involve the neuroglia cells, not the neurons. Consider the role of cell division in cancer!
17
Support Cells of the PNS Slide 7.7b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Satellite cells Protect neuron cell bodies Schwann cells Form myelin sheath in the peripheral nervous system Figure 7.3e
18
Nervous Tissue: Neurons Slide 7.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neurons = nerve cells Cells specialized to transmit messages Major regions of neurons Cell body – nucleus and metabolic center of the cell Processes – fibers that extend from the cell body (dendrites and axons)
19
Neuron Anatomy Slide 7.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Cell body Nucleus Large nucleolus Figure 7.4a
20
Neuron Anatomy Slide 7.10 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Extensions outside the cell body Dendrites – conduct impulses toward the cell body Axons – conduct impulses away from the cell body (only 1!) Figure 7.4a
21
Axons and Nerve Impulses Slide 7.11 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Axons end in terminals Axonal terminals contain vesicles with neurotransmitters Axonal terminals are separated from the next neuron by a gap Synaptic cleft – gap between adjacent neurons Synapse – junction between nerves
23
Nerve Fiber Coverings Slide 7.12 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Schwann cells – produce myelin sheaths in jelly-roll like fashion Nodes of Ranvier – gaps in myelin sheath along the axon Figure 7.5
24
Application In Multiple Scleroses the myelin sheath is destroyed. The myelin sheath hardens to a tissue called the scleroses. This is considered an autoimmune disease. Why does MS appear to affect the muscles?
25
Neuron Cell Body Location Slide 7.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Most are found in the central nervous system Gray matter – cell bodies and unmylenated fibers Nuclei – clusters of cell bodies within the white matter of the central nervous system White matter – the mylenated sheets Ganglia – collections of cell bodies outside the central nervous system
26
Functional Classification of Neurons Slide 7.14a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Sensory (afferent) neurons Carry impulses from the sensory receptors Cutaneous sense organs Proprioceptors – detect stretch or tension Motor (efferent) neurons Carry impulses from the central nervous system
27
Functional Classification of Neurons Slide 7.14b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Interneurons (association neurons) Found in neural pathways in the central nervous system Connect sensory and motor neurons
28
Neuron Classification Slide 7.15 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 7.6
29
Structural Classification of Neurons Slide 7.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Multipolar neurons – many extensions from the cell body Figure 7.8a
30
Structural Classification of Neurons Slide 7.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Bipolar neurons – one axon and one dendrite Figure 7.8b
31
Structural Classification of Neurons Slide 7.16c Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Unipolar neurons – have a short single process leaving the cell body Figure 7.8c
32
Starting a Nerve Impulse Slide 7.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Depolarization – a stimulus depolarizes the neuron’s membrane A deploarized membrane allows sodium (Na + ) to flow inside the membrane The exchange of ions initiates an action potential in the neuron Figure 7.9a–c
33
The Action Potential Slide 7.19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings If the action potential (nerve impulse) starts, it is propagated over the entire axon Potassium ions rush out of the neuron after sodium ions rush in, which repolarizes the membrane The sodium-potassium pump restores the original configuration This action requires ATP
34
Nerve Impulse Propagation Slide 7.20 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The impulse continues to move toward the cell body Impulses travel faster when fibers have a myelin sheath Figure 7.9c–e
35
Continuation of the Nerve Impulse between Neurons Slide 7.21 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Impulses are able to cross the synapse to another nerve Neurotransmitter is released from a nerve’s axon terminal The dendrite of the next neuron has receptors that are stimulated by the neurotransmitter An action potential is started in the dendrite
36
How Neurons Communicate at Synapses Slide 7.22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 7.10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.