Presentation is loading. Please wait.

Presentation is loading. Please wait.

Intensive Actuarial Training for Bulgaria January 2007 Lecture 0 – Review on Probability Theory By Michael Sze, PhD, FSA, CFA.

Similar presentations


Presentation on theme: "Intensive Actuarial Training for Bulgaria January 2007 Lecture 0 – Review on Probability Theory By Michael Sze, PhD, FSA, CFA."— Presentation transcript:

1 Intensive Actuarial Training for Bulgaria January 2007 Lecture 0 – Review on Probability Theory By Michael Sze, PhD, FSA, CFA

2 Topics Covered Some definitions and properties Moment generating functions Some common probability distributions Conditional probability Properties of expectations

3 Some Definitions and Properties Cumulative distribution function F(x) –F is non-decreasing: a < b  F(a) < F(b) –Lim b  F(b) = 1 –Lim a  -  F(a) = 0 –F is right continuous:b n  b  Lim n  F(b n ) = b E[X] =  x p(x) = , where p(x) = P(X = x) –E[g(x)] =  i x i g(x i ) p(x i ) –E[aX + b] = a E[X] + b –E[X 2 ] =  i x i 2 p(x i ) –Var(X) = E[(X -  ) 2 ] = E[X 2 ] – (E[X]) 2 –Var(a X + b) = a 2 Var (X)

4 Moment Generating Functions Definition: mgf M X (t) = E[e t x ] Properties: –There is a 1 – 1 correspondence between f(x) and M X (t) –X, Y independent r.v.  M X+Y (t)=M X (t).M Y (t) –X 1,…,X n indep.  M  i xi (t)=  i M xi (t) –mgf for f 1 + f 2 + f 3 = M x1 (t) + M x2 (t) + M x3 (t) –M’ X (0) = E[X] –M (n) X (0) = E[X n ]

5 Some Common Discrete Probability Distributions Binomial random variable (r.v.) with parameters (n, p) Poisson r.v. with parameter Geometric r.v. with parameter p Negative binomial r.v. with parameter (r, p)

6 Some Common Continuous Probability Distributions Uniform r.v. on (a, b) Normal r.v. with parameter ( ,  2 ) Exponential r.v. with parameter Gamma r.v. with parameters (t, ), t, > 0

7 Binomial r.v. B(n, p) n is integer, 0  p  1 Probability of getting i heads in n trials p(i) = n C i p i q n – i E[X] = n p Var(X) = n p q M X (t) = (p e t + q) n

8 Poisson r.v. with parameter > 0, the expected number of events Poisson is good approximation of binomial for large n, small p, and not too big np  n p p(i) = P(X = i) = e - x ( i / i!) E[X] = Var(X) = M X (t) = exp [ (e t - 1) ]

9 Geometric r.v with parameter p 0  p  1, probability of success in one trial Geometric r.v. is used to study the probability of getting the success in n trials p(n) = P(X = n) = q n - 1 p E[X] = 1/p Var(X) = q / p 2. M X (t) = p e t / ( 1 - q e t )

10 Negative Binomial r.v. with parameter r, p p = probability of success in each trial r = number of successes wanted Negative binomial r.v. is used to study the probability of getting first r successes in n trials p(n) = P(X = n) = n - 1 C r - 1 q n - r p r. E[X] = r / p Var(X) = r q / p 2 M X (t) = [p e t / ( 1 - q e t )] r

11 Uniform r.v. on (a, b) a < x < b f(x) =  1 / (b – a) for a < x < b  0 otherwise F(c) =  (c – a) / (b – a) for a < x < b  0 otherwise E[X] = (a + b) / 2 Var(X) = (b – a) 2 / 12 M X (t) = (e tb - e ta ) / [t (b - a)]

12 Normal r.v. with parameters ( ,  2 ) By central limit theorem, many r.v. can be approximated by a normal distribution f(x) = [1/  (2  2 )] exp [ - (x -  ) 2 / 2  2 ] E[X] =  Var(X) =  2. M X (t) = exp [  t +  2 t 2 /2 ]

13 Exponential r.v. with parameter > 0 Exponential r.v. X gives the amount of waiting time until the next event happens X is memoryless: P(X>s+t|X>t) = P(X>s) for all s, t  0 f(x) = e - x. for x  0, 0 otherwise F(a) = 1 - e - a E[X] = 1 / Var(X) = 1 / 2 M X (t) = / ( - t )

14 Gamma r.v. with parameters (s, ) s, > 0 Exponential r.v. X gives the amount of waiting time until the next s events happen f(x) = e - x ( x) s – 1 /  (t) for x  0, 0 otherwise  (s) =  0  e - y y s – 1 dy  (n) = (n – 1)!,  (1) =  (0) = 1 E[X] = s / Var(X) = s / 2 M X (t) = [ / ( - t )] s

15 Conditional Probability Definition:For P(F)>0, P(E|F) = P(EF)/P(F) Properties: –For A 1,…,A n,whereA i  A j =  for  i  j (exclusive), and  A i = S(exhaustive), then P(B) =  i P(B|A i ) P(A i ) –Baye’s Theorem: For P(B)>0, P(A|B) = [P(B|A).P(A)]/P(B) –E[X|A] =  i x i P(x i |A) –E[X|  A i ] =  i E(X|A i ) P(A i )

16 Properties of Expectation E[X + Y] = E[X] + E[Y] E[  i X i ] =  i E[X i ] If X,Y are independent, then E[g(X) h(Y)] = E[g(X)] E[h(Y)] Def.: Cov(X,Y) = E[(X-E[X])(Y-E[Y])] Cov(X,Y) = Cov(Y,X) Cov(X,X) = Var(X) Cov(aX,Y) = a Cov(X,Y)

17 Properties of Expectation(continued) Cov(  i X i,  j Y j ) =  i  j Cov(X i,Y j ) Var(  i X i ) =  i Var(X i ) +  i  j Cov(X i,Y j ) If S N = X 1 +…+X N is a compound process –X i are mutually independent, –X i are independent of N, and –X i have the same distribution, then E[S N ] =  i E[X i ] Var(S N ) = E[N] Var(X) + Var(N) (E[X]) 2


Download ppt "Intensive Actuarial Training for Bulgaria January 2007 Lecture 0 – Review on Probability Theory By Michael Sze, PhD, FSA, CFA."

Similar presentations


Ads by Google