Download presentation
Presentation is loading. Please wait.
Published byAmelia Franklin Modified over 9 years ago
1
Penn ESE370 Fall2012 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 4: September 12, 2012 Transistor Introduction (first order)
2
Today First order model There are always Rs and Cs Penn ESE370 Fall2012 -- DeHon 2
3
Previously Quasi-Static – inputs transition, circuit responds, and settles –Dynamic transition to roughly static states DC/Steady-State –Ignore the capacitors Zeroth-order allows us to reason (mostly) at logic level about steady-state functionality of typical gate circuits Penn ESE370 Fall2012 -- DeHon 3
4
Zero-th Order MOSFET Ideal Switch Vgs > Vth conducts Vgs < Vth does not conduct Vth – threshold voltage Gate draws no current from input –Loads input capacitively Penn ESE370 Fall2012 -- DeHon 4
5
Zero-th Order MOSFET Penn ESE370 Fall2012 -- DeHon 5 I DS
6
First Order Model Switch –Loads gate input capacitively C g –Has finite drive strength R on Penn ESE370 Fall2012 -- DeHon 6
7
Gate Output Assume this is equivalent circuit for gate output state Penn ESE370 Fall2012 -- DeHon 7
8
Gate Output Load What is Vout if gate is unloaded? Penn ESE370 Fall2012 -- DeHon 8
9
Gate Output Load What happens to Vout when add a load? Penn ESE370 Fall2012 -- DeHon 9
10
Resistive Load What happens when load is resistance? Penn ESE370 Fall2012 -- DeHon 10
11
Resistive Load If loaded resistively, and resistive load is too strong (resistance too low) Cause output voltage to drop Penn ESE370 Fall2012 -- DeHon 11
12
Capacitive Load What happens when load is capacitance? Penn ESE370 Fall2012 -- DeHon 12
13
Capacitive Load Capacitive load does not change the steady-state output voltage Will effect the delay (settling time) Penn ESE370 Fall2012 -- DeHon 13
14
First Order Model Switch –Loads gate input capacitively Draw no current Does not impact steady-state voltage Impacts Delay –Has finite drive strength Could form voltage divider with resistive load Impacts Delay Penn ESE370 Fall2012 -- DeHon 14
15
First Order Model (vs. Vds) Penn ESE370 Fall2012 -- DeHon 15
16
First Order Model (vs. Vgs) Penn ESE370 Fall2012 -- DeHon 16
17
Refine to First Order Penn ESE370 Fall2012 -- DeHon 17
18
Zero-th Order Tells us how switches set (Vin=0) Penn ESE370 Fall2012 -- DeHon 18 How are switches set in this case?
19
Zero-th Order Tells us how switches set (Vin=0) Penn ESE370 Fall2012 -- DeHon 19 V2=Vdd Vout=0
20
Zero-th Order Tells us how switches set (Vin=0) Penn ESE370 Fall2012 -- DeHon 20 V2=Vdd Vout=0
21
Zero-th Order Tells us how switches set (Vin=0) Leaves an RC Circuit we can analyze Penn ESE370 Fall2012 -- DeHon 21 ESE215 problem
22
Zero-th Order Tells us how switches set (Vin=0) Look at middle stage (V2) Penn ESE370 Fall2012 -- DeHon 22 What is equivalent circuit of load at V2?
23
Zero-th Order Tells us how switches set (Vin=0) Look at middle stage (V2) Penn ESE370 Fall2012 -- DeHon 23 What is equivalent output circuit for first pair of transistors driving V2?
24
Zero-th Order Tells us how switches set (Vin=0) Look at middle stage (V2) Penn ESE370 Fall2012 -- DeHon 24 What is relevant circuit?
25
Zero-th Order Tells us how switches set (Vin=0) Look at middle stage (V2) Penn ESE370 Fall2012 -- DeHon 25 What is relevant circuit? Gnd Vdd
26
Zero-th Order Tells us how switches set (Vin=0) Look at middle stage (V2) Penn ESE370 Fall2012 -- DeHon 26 What is delay of this stage? (charging V2 when Vin switch Vdd 0)
27
What more does first-order model tell us? Delay Quasistatic behavior Voltage settling with resistive loads –At least some basis for reasoning Penn ESE370 Fall2012 -- DeHon 27
28
What is this leaving out? Penn ESE370 Fall2012 -- DeHon 28
29
What is this leaving out? Penn ESE370 Fall2012 -- DeHon 29
30
What leaving out? What happens at intermediate voltages –Not rail-to-rail Details of dynamics, including… –Input not transition as step –Intermediate drive strengths change with Vgs Isn’t really 0 current below threshold Penn ESE370 Fall2012 -- DeHon 30
31
Engineering Control Vth – process engineer Drive strength (R on )– circuit engineer control with sizing transistors Supply voltages (Vdd) –range set by process –detail use by circuit design Penn ESE370 Fall2012 -- DeHon 31
32
Engineering Control: Threshold Penn ESE370 Fall2012 -- DeHon 32
33
Engineering Control: Drive Strength Penn ESE370 Fall2012 -- DeHon 33
34
Rs and Cs Penn ESE370 Fall2012 -- DeHon 34
35
Wire Capacitance Penn ESE370 Fall2012 -- DeHon 35
36
Wire Capacitance Penn ESE370 Fall2012 -- DeHon 36
37
Wire Resistance Penn ESE370 Fall2012 -- DeHon 37
38
Wire Resistance Penn ESE370 Fall2012 -- DeHon 38
39
Wire Resistance Sanity check –Wire twice as long = resistors in series –Wire twice as wide = resistors in parallel Penn ESE370 Fall2012 -- DeHon 39
40
There are always Rs and Cs Every wire (connection) has resistance Every wire has capacitance (Every wire has inductance) Modeling vs. discrete components Dominant effects –Rbig + Rsmall ≈ Rbig (Rwire << Ron)? –Cbig || Csmall ≈ Cbig (Cwire<<Cg) ? Penn ESE370 Fall2012 -- DeHon 40
41
Admin Posted –Lab Instructions –Homework 2 Homework 1 due tomorrow –(make sure clear on blackboard turnin) Lab on Friday –Read lab instructions and HW2 –Bring USB drive Monday back in Lecture Penn ESE370 Fall2012 -- DeHon 41
42
Penn ESE370 Fall2012 -- DeHon 42 MOSFET
43
Big Ideas MOSFET Transistor as switch Purpose-driven simplified modeling –Aid reasoning, sanity check, simplify design Analysis methodology –zero-th order to understand switch state (logic) –First-order to get equivalent RC circuit (delay) New perspective on Rs and Cs Penn ESE370 Fall2012 -- DeHon 43
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.