Download presentation
Presentation is loading. Please wait.
Published byClemence Holland Modified over 9 years ago
1
Circular Motion Lecture 08: l Uniform Circular Motion è Centripetal Acceleration è More Dynamics Problems l Circular Motion with Angular Acceleration è Displacement, Velocity, Acceleration è Kinematics Equations
2
v Uniform Circular Motion An object moving in a circle with constant velocity.
3
Acceleration in Uniform Circular Motion l Centripetal Acceleration è Due to change in DIRECTION (not speed) è Direction of Acceleration: INWARD è Magnitude of Acceleration: v R
4
Uniform Circular Motion v R Instantaneous velocity is tangent to circle. Instantaneous acceleration is radially inward. There must be a net inward force to provide the acceleration. a
5
Driving Example l As you drive over the top of a hill (with radius of curvature of 36 m) in your minivan, at what speed will you begin to leave the road? è There are two forces on the car: »Normal »Gravity è Write F = ma: »F N – F g = -m v 2 /R (note: acceleration is DOWN!) »F N – mg = -m v 2 /R è F N = 0 as you just barely leave the road… »-mg = -m v 2 /R »g = v 2 /R v FNFN FgFg 18.8 m/s
6
More Circular Motion (Non-Uniform) Angular Displacement = 2 - 1 è How far (through what angle) it has rotated Units: radians (2 radians = 1 revolution) Angular Velocity = t è How fast it is rotating è Units: radians/second Angular Acceleration = t è Change in angular velocity divided by time è Units: radians/second 2 Period = 1/frequency T = 1/f = 2 è Time to complete 1 revolution (or 2 radians) è Units: seconds
7
Circular to Linear Displacement x = R in radians) Velocity |v| = x/ t = R / t = R Acceleration |a| = v/ t = R / t = R
8
Kinematics for Circular Motion w/ constant Linear Variables x,v,a (constant a). Angular Variables , , (constant
9
Gears Example l One of the gears in your car has a radius of 20 cm. Starting from rest it accelerates from 900 rpm to 2000 rpm in 0.5 s (rpm stands for revolutions per minute). Find the angular acceleration, the angular displacement during this time, and the final linear speed of a point on the outside of the gear. è Note that 0 = 94 rad/s and = 209 rad/s è Find angular acceleration: è Find angular displacement: è Find final linear speed: = 230 rad/s 2 = 76 rad v = 42 m/s
10
Summary of Concepts l Uniform Circular Motion è Speed is constant è Direction is changing è Acceleration toward center a = v 2 / R è Newton’s Second Law F = ma l Circular Motion with Angular Acceleration = angular position: rad. = angular velocity: rad/s = angular acceleration: rad/s 2 Linear to Circular conversions (x = R v = R a = R è Kinematics Equations
11
v
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.