Download presentation
Presentation is loading. Please wait.
Published byConstance Lewis Modified over 8 years ago
1
1 11/20/13 21/11/2015 Hu@Xiamen Jinniu Hu School of Physics, Nankai University Workshop on “Chiral forces and ab initio calculations” Nov. 20- Nov. 22, 2015, Xiamen University The equation of state of nuclear matter from quantum chromodynamics theory
2
21/11/2015 Outline The realistic nucleon-nucleon interaction Nuclear matter with chiral force Nuclear matter with lattice force Summary and respective Hu@Xiamen
3
21/11/2015 Realistic NN interaction History One pion exchange Yukawa (1935) Multi-pion Taketani et al. (1951) Repulsive Jastrow (1951) One Boson exchange Bonn Group (1970~) EFT Weinberg (1990) High precision potentials (1990~) Lattice (2000~) Hu@Xiamen
4
Realistic NN interaction Realistic nucleon-nucleon interaction From the nucleon-nucleon scattering experiment k k’ z θ Differential scattering cross section 21/11/2015 Hu@Xiamen
5
NN scattering data R. Navarro Pérez, J. E. Amaro, and E. Ruiz Arriola, Phys. Rev. C 89(2014)064006 8125! 21/11/2015 Hu@Xiamen
6
Partial wave representation The good quantum numbers in NN scattering problem Momentum k, Total angular momentum J, Total spin S, Total isospin T The wave function of NN scattering states The NN interaction in partial wave representation 21/11/2015 Hu@Xiamen
7
Two nucleon states StatesCentralTensor and spin-orbit J=0, S=0, T=1, L=0 1 S 0 (pp,np,nn)- J=0, S=1, T=1, L=1 3 P 0 (pp,np,nn)- J=1, S=0, T=0, L=1 1 P 1 (np)- J=1, S=1, T=1, L=1 3 P 1 (pp,np,nn)- J=1, S=1, T=0, L=0,2 3 S 1 – 3 D 1 (np) J=2, S=0, T=1, L=2 1 D 2 (pp,np,nn)- J=2, S=1, T=0, L=2 3 D 2 (np)- J=2, S=1, T=1, L=1,3 3 P 2 – 3 F 2 (pp,np,nn) J=3, S=0, T=0, L=3 1 F 3 (np)- J=3, S=1, T=1, L=3 3 F 2 (pp,np,nn)- J=3, S=1, T=0, L=2,4 3 D 3 – 3 G 3 (np) 21/11/2015 Hu@Xiamen
8
Types of realistic NN interaction Phenomenological interaction Based upon the standard non-relativistic operator structure Gammel-Thaler potential Hard core J. L. Gammel, and R. M. Thaler, Phys. Rev. 107(1957)291 Hamada-Johnston potential Hard core T. Hamada, and I. D. Johnston, Nucl. Phys. 34 (1962)382 Reid potential soft core R.V. Reid, Ann. Phys. (N.Y.) 50(1968)411 Argonne V14 potential R. B. Wiringa, R. A. Smith, and T. L. Ainsworth, Phys. Rev. C 29(1984)1207 Argonne V18 potential R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51(1995)38 21/11/2015 Hu@Xiamen
9
Types of realistic NN interaction Relativistic interaction Based upon the quantum field theory One boson exchange potential R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149(1987)1 CD Bonn potential R. Machleidt, Phys. Rev. C 63(2001)024001 Chiral effective potential R. Machleidt, and D. R. Entem, Phys. Rep. 503(2011)1 Lattice QCD potential N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99(2007)022001 21/11/2015 Hu@Xiamen
10
The shape of NN interaction 21/11/2015 Hu@Xiamen
11
Chiral effective NN interaction The Lagrangian of chiral effective field theory The Lagrangian of dynamics among pions The Lagrangian of pion and nucleon interaction where 21/11/2015 Hu@Xiamen
12
Chiral effective NN interaction 21/11/2015 Hu@Xiamen
13
Chiral effective NN interaction E. Epelbaum, H. Krebs and U. -G. Meissner, PRL115(2015)122301 phase shift differential cross section NLO N 2 LO N 3 LO N 4 LO 21/11/2015 Hu@Xiamen
14
High precision NN interaction AV 18CD-BonnIdaho(N 3 LO) Bochum (N 4 LO) Parameters40382426 c 2 /datum(np) (0~100 MeV) 0.950.61.7-5.20.3 c 2 /datum(pp) (0~100 MeV) 1.00.51.5-6.70.3 B d (MeV) 2.224575 P D (%) 5.764.854.514.29 21/11/2015 Hu@Xiamen
15
Lattice QCD NN interaction Sketch of Lattice method NN wave function is constructed by using lattice QCD. The NN potential is constructed from the wave function by demanding that the wave function should satisfy the Schrodinger equation. Schematically 21/11/2015 Hu@Xiamen
16
Lattice QCD NN interaction Lattice QCD NN scattering T. Inoue et al, Nuc. Phys. A 881(2012)28 21/11/2015 Hu@Xiamen
17
Outline The realistic nucleon-nucleon interaction Nuclear matter with chiral force Nuclear matter with lattice force Summary and respective 21/11/2015 Hu@Xiamen
18
BHF theory in nuclear matter 18 Bethe-Goldstone equation in basis space where is the Fermi energy, is the starting energy and are intermediate states. Bethe-Goldstone equation in plane wave basis where is a shorthand notation for and. Matrix inversion method 21/11/2015 Hu@Xiamen
19
BHF theory in nuclear matter Single particle potential Single particle energy Energy per nucleon 21/11/2015 Hu@Xiamen
20
EOSs of symmetric nuclear matter with chiral force 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory E. Epelbaum, H. Krebs and U. -G. Meissner, PRL115(2015)122301
21
Equation of states of symmetric nuclear matter with chiral force 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
22
The partial wave contributions at saturation density for N 4 LO 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
23
The partial wave contributions at r=0.4 fm -3 for N 3 LO 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
24
The partial wave contributions at r=0.8 fm -3 for N 3 LO 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
25
Equation of states of pure neutron matter with chiral force 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
26
Equation of states of pure neutron matter with chiral force 21/11/2015 Hu@Xiamen Nuclear matter in BHF theory
27
BHF theory in nuclear matter Symmetric energy of nuclear matter with chiral force 21/11/2015 Hu@Xiamen
28
21/11/2015 Outline The realistic nucleon-nucleon interaction Nuclear matter with chiral force Nuclear matter with lattice force Summary and respective Hu@Xiamen
29
21/11/2015 Hu@Xiamen Lattice potential in r-space
30
21/11/2015 Hu@Xiamen Lattice potential in p-space
31
21/11/2015 Hu@Xiamen OBEP from lattice
32
21/11/2015 Hu@Xiamen EOS from lattice force
33
21/11/2015 Hu@Xiamen P-waves effect
34
21/11/2015 Outline The realistic nucleon-nucleon interaction Nuclear matter with chiral force Nuclear matter with lattice force Summary and respective Hu@Xiamen
35
21/11/2015 Summary and perspectives We studied the properties of nuclear matter with chiral effective potential based on chiral symmetry of QCD theory The properties of nuclear matter with chiral effective force become convergence with the high order term We also attempt to study the nuclear matter with lattice NN interaction The Delta isobar effect in nuclear matter The three-body effect ...... Perspectives Hu@Xiamen
36
21/11/2015 Thank you very much for your attention ! Hu@Xiamen
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.