Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Selection Sort Mr. Dave Clausen La Cañada High School.

Similar presentations


Presentation on theme: "The Selection Sort Mr. Dave Clausen La Cañada High School."— Presentation transcript:

1 The Selection Sort Mr. Dave Clausen La Cañada High School

2 Objectives Understand and use the Selection Sort to sort data in a program.Understand and use the Selection Sort to sort data in a program. Understand and know Big-O notation for the Selection Sort.Understand and know Big-O notation for the Selection Sort. Mr. Dave Clausen2

3 3 The Selection Sort Description The Selection Sort searches (linear search) all of the elements in a list until it finds the smallest element. It “swaps” this with the first element in the list. Next it finds the smallest of the remaining elements, and “swaps” it with the second element. Repeat this process until you compare only the last two elements in the list.

4 Mr. Dave Clausen4 The Selection Sort Algorithm For each index positionFor each index position i –Find the smallest data value in the array from positions through length - 1, where length is the number of data values stored. –Find the smallest data value in the array from positions i through length - 1, where length is the number of data values stored. –Exchange (swap) the smallest value with the value at position. –Exchange (swap) the smallest value with the value at position i.

5 Mr. Dave Clausen5 We start by searching for the smallest element in the List. A Selection Sort Example Smallest ?

6 Mr. Dave Clausen6 A Selection Sort Example Smallest ?

7 Mr. Dave Clausen7 A Selection Sort Example Smallest !

8 Mr. Dave Clausen8 A Selection Sort Example Swap

9 Mr. Dave Clausen9 A Selection Sort Example Swapped

10 Mr. Dave Clausen10 A Selection Sort Example After the smallest element is in the first position, we continue searching with the second element and look for the next smallest element. Smallest ?

11 Mr. Dave Clausen11 A Selection Sort Example In this special case, the next smallest element is in the second position already. Swapping keeps it in this position. Smallest !

12 Mr. Dave Clausen12 A Selection Sort Example Swapping keeps it in this position. Swapped

13 Mr. Dave Clausen13 A Selection Sort Example After the next smallest element is in the second position, we continue searching with the third element and look for the next smallest element. Smallest ?

14 Mr. Dave Clausen14 A Selection Sort Example Smallest !

15 Mr. Dave Clausen15 A Selection Sort Example Swap

16 Mr. Dave Clausen16 A Selection Sort Example Swapped

17 Mr. Dave Clausen17 A Selection Sort Example Smallest ?

18 Mr. Dave Clausen18 A Selection Sort Example Smallest ?

19 Mr. Dave Clausen19 A Selection Sort Example Smallest !

20 Mr. Dave Clausen20 A Selection Sort Example Swap

21 Mr. Dave Clausen21 A Selection Sort Example Swapped

22 Mr. Dave Clausen22 A Selection Sort Example The last two elements are in order, so no swap is necessary.

23 Mr. Dave Clausen23 What “Swapping” Means TEMP Place the first element into the Temporary Variable. 6

24 Mr. Dave Clausen24 What “Swapping” Means TEMP Replace the first element with the value of the smallest element. 6

25 Mr. Dave Clausen25 What “Swapping” Means TEMP Replace the third element (in this example) with the Temporary Variable. 6

26 Mr. Dave Clausen26 C + + Examples of The Selection Sort Sample C++ Program For Selection Sort: sel_sort.cpp Animated Examples: Visual1.exeVisual1.exe Visual1.cpp Visual1.cpp Visual1.exeVisual1.cpp Visual2.exeVisual2.exe Visual2.cpp Visual2.cpp Visual2.exeVisual2.cpp On the Net: http://compsci.exeter.edu/Winter99/CS320/Resources/sortDemo.html http://www.aist.go.jp/ETL/~suzaki/AlgorithmAnimation/index.html

27 Mr. Dave Clausen27 C + + Code For Selection Sort void Selection_Sort (vector & v) { int min_index = 0; for (int index = 0; index < v.size( ) - 1; ++index) for (int index = 0; index < v.size( ) - 1; ++index){ min_index = Find_Minimum (v, index); min_index = Find_Minimum (v, index); if (min_index ! = index) if (min_index ! = index) Swap_Data ( v [index], v [min_index]) Swap_Data ( v [index], v [min_index]) }} // Selection_Sort

28 Mr. Dave Clausen28 C + + Code For Find Minimum int Find_Minimum (const vector & v, int first) { int min_index = first; for (int index = first + 1; index < v.size( ); ++index) for (int index = first + 1; index < v.size( ); ++index) if ( v[index] < v[min_index]) if ( v[index] < v[min_index]) min_index = index; return min_index; } // Find_Minimum

29 Mr. Dave Clausen29 C + + Code for Swap Procedure void Swap_Data (int &number1, int &number2) { int temp; int temp; temp = number1; temp = number1; number1 = number2; number1 = number2; number2 = temp; number2 = temp;} // End of Swap_Data function

30 Mr. Dave Clausen30 Pascal Code for Swap Procedure procedure Swap (var number1, number2: integer); var temp: integer; temp: integer;begin temp := number1; temp := number1; number1 := number2; number1 := number2; number2 := temp number2 := temp end; {Swap}

31 Mr. Dave Clausen31 Pascal Code For Selection Sort procedure SelectionSort (var IntArray: IntNumbers); var element, SmallIndex, index: integer; var element, SmallIndex, index: integer;begin for element := 1 to (MaxNum - 1) do for element := 1 to (MaxNum - 1) do begin begin SmallIndex := element; SmallIndex := element; for index := (element + 1) to MaxNum do for index := (element + 1) to MaxNum do if IntArray [index] < IntArray [SmallIndex] if IntArray [index] < IntArray [SmallIndex] then SmallIndex := index; then SmallIndex := index; Swap (IntArray [element], IntArray [SmallIndex]) Swap (IntArray [element], IntArray [SmallIndex]) end; end; end; {SelectionSort}

32 Mr. Dave Clausen32 BASIC Code For Selection Sort 8000 REM ################# 8010 REM Selection Sort 8020 REM ################# 8030 FOR ELEMENT = 1 TO MAXNUM - 1 8040 ::SmallIndex = element 8050 ::FOR INDEX = (element + 1) TO MAXNUM 8060 ::::::IF N (INDEX) < N (SmallIndex) THEN SmallIndex = INDEX 8070 ::NEXT INDEX 8080 ::TEMP = N (element) 8090 ::N (element) = N (SmallIndex) 8100 ::N (SmallIndex) = TEMP 8110 NEXT ELEMENT 8120 RETURN

33 Mr. Dave Clausen33 Big - O Notation Big - O notation is used to describe the efficiency of a search or sort. The actual time necessary to complete the sort varies according to the speed of your system. Big - O notation is an approximate mathematical formula to determine how many operations are necessary to perform the search or sort. The Big - O notation for the Selection Sort is O(n 2 ), because it takes approximately n 2 passes to sort the elements.


Download ppt "The Selection Sort Mr. Dave Clausen La Cañada High School."

Similar presentations


Ads by Google