Download presentation
Published byMartin Floyd Modified over 8 years ago
1
Solve a quadratic equation by finding square roots
EXAMPLE 1 Solve a quadratic equation by finding square roots Solve x2 – 8x + 16 = 25. x2 – 8x + 16 = 25 Write original equation. (x – 4)2 = 25 Write left side as a binomial squared. x – 4 = +5 Take square roots of each side. x = 4 + 5 Solve for x. The solutions are = 9 and 4 –5 = – 1. ANSWER
2
EXAMPLE 2 Make a perfect square trinomial Find the value of c that makes x2 + 16x + c a perfect square trinomial. Then write the expression as the square of a binomial. SOLUTION STEP 1 16 2 = 8 Find half the coefficient of x. STEP 2 Square the result of Step 1. 82 = 64 STEP 3 Replace c with the result of Step 2. x2 + 16x + 64
3
EXAMPLE 2 Make a perfect square trinomial ANSWER The trinomial x2 + 16x + c is a perfect square when c = 64. Then x2 + 16x + 64 = (x + 8)(x + 8) = (x + 8)2.
4
GUIDED PRACTICE for Examples 1 and 2 Solve the equation by finding square roots. x2 + 6x + 9 = 36. ANSWER 3 and –9. x2 – 10x + 25 = 1. ANSWER 4 and 6. x2 – 24x = 100. ANSWER 2 and 22.
5
GUIDED PRACTICE for Examples 1 and 2 Find the value of c that makes the expression a perfect square trinomial.Then write the expression as the square of a binomial. 4. x2 + 14x + c ANSWER 49 ; (x + 7)2 5. x2 + 22x + c ANSWER 121 ; (x + 11)2 6. x2 – 9x + c 81 4 9 2 ANSWER ; (x – )2.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.