Download presentation
Presentation is loading. Please wait.
Published byLouisa McKenzie Modified over 9 years ago
1
5.3.2 Hamilton paths
2
Definition 20: A Hamilton paths is a path that contains each vertex exactly once. A Hamilton circuit is a circuit that contains each vertex exactly once except for the first vertex, which is also the last.
3
Theorem 5.8: Suppose G(V,E) that has a Hamilton circuit, then for each nonempty proper subset S of V(G), the result which (G- S)≤|S| holds, where G-S is the subgraph of G by omitting all vertices of S from V(G). (G-S)=1 , |S|=2 The graph G has not any Hamilton circuit, if there is a nonempty purely subgraph S of G so that (G-S)>|S|.
4
Omit {b,h,i} from V, (G-S)=4>3=|S| , The graph has not any Hamilton circuit
5
If (G-S)≤|S| for each nonempty proper subset S of G, then G has a Hamilton circuit or has not any Hamilton circuit. For example: Petersen graph
6
Proof: Let C be a Hamilton circuit of G(V,E). Then (C-S)≤|S| for each nonempty proper subset S of V Why? Let us apply induction on the number of elements of S. |S|=1, The result holds Suppose that result holds for |S|=k. Let |S|=k+1 Let S=S' ∪ {v} , then |S'|=k By the inductive hypothesis, (C-S')≤|S'| V(C-S)=V(G-S) Thus C-S is a spanning subgraph of G-S Therefore (G-S)≤ (C-S)≤|S|
7
Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent, d(u)+d(v)≥n. n=8,d(u)=d(v)=3, u and v are not adjacent, d(u)+d(v)=6<8, But there is a Hamilton circuit in the graph. Note:1)if G has a Hamilton circuit, then G has a Hamilton path Hamilton circuit :v 1,v 2,v 3,…v n,v 1 Hamilton path:v 1,v 2,v 3,…v n, 2)If G has a Hamilton path, then G has a Hamilton circuit or has not any Hamilton circuit
8
Corollary 1: Let G be a simple graph with n vertices, n>2. G has a Hamilton circuit if each vertex has degree greater than or equal to n/2. Proof: If any two vertices of G are adjacent,then G has a Hamilton circuit v 1,v 2,v 3,…v n,v 1 。 If G has two vertices u and v that are not adjacent, then d(u)+d(v)≥n. By the theorem 5.9, G has a Hamilton circuit. K n has a Hamilton circuit where n≥3
9
Theorem 5.10: Let the number of edges of G be m. Then G has a Hamilton circuit if m≥(n 2 - 3n+6)/2,where n is the number of vertices of G. Proof: If any two vertices of G are adjacent,then G has a Hamilton circuit v 1,v 2,v 3,…v n,v 1. Suppose that u and v are any two vertices of G that are not adjacent. Let H be the graph produced by eliminating u and v from G. Thus H has n-2 vertices and m-d(u)-d(v) edges.
10
Theorem 5. 11 : Let G be a simple graph with n vertices, n>2. G has a Hamilton path if for any two vertices u and v of G that are not adjacent, d(u)+d(v) n-1.
11
5.4 Shortest-path problem Let G=(V,E,w) be a weighted connected simple graph, w is a function from edges set E to position real numbers set. We denoted the weighted of edge {i,j} by w(i,j), and w(i,j)=+ when {i,j} E Definition 21: Let the length of a path p in a weighted graph G =(V,E,w) be the sum of the weights of the edges of this path. We denoted by w(p). The distance between two vertices u and v is the length of a shortest path between u and v, we denoted by d(u,v).
12
Dijkstra’s algorithm (E.W.Dijkstra) In 1959
13
Let G=(V,E,w) and |V|=n where w>0. Suppose that S is a nonempty subset of V and v 1 S. Let T=V-S. Example: Suppose that (u,v',v'',v''', v) is a shortest path between u and v. Then (u,v',v'',v''') is a shortest path between u and v'''.
14
Exercise P306 3,4,5,6,18 Next: Shortest-path problem Trees and their properties 7.4 P273
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.