Download presentation
Presentation is loading. Please wait.
Published byCecilia Rosanna Watson Modified over 8 years ago
1
TRI P project & facility TRI P separator Status & future plans TRI P SEPARATOR: STATUS & FUTURE TRI P Krakow 3-6 June 2004 Andrey Rogachevskiy
2
TRI P - Trapped Radioactive Isotopes: -laboratories for fundamental Physics Krakow 3-6 June 2004 TRI P Beyond the Standard Model TeV Physics EDM/ -decay Production Ion Catcher RFQ Cooler MOT Nuclear Physics Atomic Physics Particle Physics Production Target Magnetic Separator MeVmeVkeVeVneV AGOR cyclotron ? Gas cell Thermal ionizer options Presentation by L.Willmann Presentation by E. Traykov Presentation by U. Dammalapati
3
Detector 1 Detector 2 QD AGOR beam T 1 T 2 Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 T 3 B = p/q v A/Z TOF A/Z E A 2 Polyethylene target Carbon target 21 Ne(p,n) 21 Na 21 Na
4
Detector 1 Detector 2 QD AGOR beam T 1 T 2 Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 T 3 B = p/q v A/Z TOF A/Z E A 2 Polyethylene target Carbon target 21 Ne(p,n) 21 Na 21 Na
5
Dispersive plane Achromatic focus QD AGOR beam T1 Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 Detector 2 Detector 1 B = p/q v A/Z TOF A/Z E A 2
6
Dispersive plane Achromatic focus QD AGOR beam T1 Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 Detector 2 Detector 1 B = p/q v A/Z TOF A/Z E A 2 Achromatic focus Dispersive plane N-Z
7
B = p/q v A/Z TOF A/Z E A 2 QD AGOR beam Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 Detector 1 Detector 2 Dispersive plane
8
B = p/q v A/Z TOF A/Z E A 2 QD AGOR beam Traps DD TRI P Separator commissioning Krakow 3-6 June 2004 Detector 1 Detector 2 Dispersive plane EE TOF
9
SUMMARY & FUTURE PLANS TRI P Krakow 3-6 June 2004 Separator installed, 1-st commissioning is done Next experimental steps: optimize 21 Na production liquid H 2 target installation & test recoil separator mode (gas filled) Next construction steps: Work on gas cell, thermal ionizer & RFQ Atom trap (U. Dammalapati) Low energy beam line construction (E. Traykov) 2005: Start of TRI P as a general user facility Presentation by E. Traykov
10
SUMMARY & FUTURE PLANS TRI P Krakow 3-6 June 2004 Separator installed, 1-st commissioning is done Next experimental steps: optimize 21 Na production liquid H 2 target installation & test recoil separator mode (gas filled) Next construction steps: Work on gas cell, thermal ionizer & RFQ Atom trap (U. Dammalapati) Low energy beam line construction (E. Traykov) 2005: Start of TRI P as a general user facility
11
TRI P Group: G.P. Berg, A. M. v.d. Berg, P.M. Beijers, U. Dammalapati, P.G. Dendooven, O. Dermois, G. Ebberink, M.N. Harakeh, R. Hoekstra, L. Huisman, K. Jungmann, H. Kiewiet, R. Kremers, R. Morgenstern, J. Mulder, G. Onderwater, A. Rogachevskiy, M. Sanchez- Vega, M. Sohani, M. Stokroos, R. Timmermans, E. Traykov, O. Versolato, A. Young, L. Willmann, H.W. Wilschut
12
Dipoles Quadrupoles BT1 BT2 BT3 BT4 QT1 QT2 QT4 QT5 QT6 QT7 QT9 QT8 DD QD T3 T2 T1
13
QD AGOR beam Target chamber 1 Target chamber 2 Low energy beam Traps Gas cooler, RFQ Gas-filled recoil mode * In the gas-filled mode the resolving power is limited by multiple scattering in the gas Fragmentation mode DD TRI P Separator parameters The double mode separator Krakow 3-6 June 2004
14
RFQ in vacuum Transverse cooling Velocity damping With and without a drag voltage on the segments Tests: Buffer gas pressure (He): ~10 -1 mbar RFQ ion coolerRFQ ion buncher 10eVthermal Trap position Switching on end electrodes ~10 -3 mbar TRI P See presentation by Emil Traykov Krakow 3-6 June 2004 RFQ prototype test 330 mm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.