Presentation is loading. Please wait.

Presentation is loading. Please wait.

Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.

Similar presentations


Presentation on theme: "Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche."— Presentation transcript:

1 Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche Lawrence Berkeley National Laboratory 11 th International Conference on Nucleus-Nucleus Collisions May 29, 2012 San Antonio, TX

2 Outline Region of Interest Berkeley Gas-filled Separator Trochoidal Mass Separator

3 118 117 116 288 115 88 ms 287 115 32 ms 115 114 282 113 61 ms 284 113 0.48 s 283 113 0.10 s 278 113 2 ms 113 277 112 0.7  s 112 278 111 4 ms 280 111 3.59 s 279 111 0.17 s 274 111 15 ms 272 111 3 ms 111 269 110 130  s 110 270 110 3 ms 271 110 12 ms 273 110 170  s 276 109 0.72 s 275 109 10 ms 274 109 2.91 s 266 109 2 ms 109 268 109 25 ms 270 109 3 ms 269 108 14 s 268 108 0.37 s 267 108 68 ms 266 108 4 ms 265 108 2 ms 263 108 23 ms 262 108 260  s 108 270 108 23 s 262 107 0.10 s 261 107 12 ms 260 107 32 ms 107 266 107 1 s 265 107 0.94 s 264 107 0.11 s 267 107 17 s 270 107 61 s 272 107 9.79 s 106 259 106 0.48 s 261 106 0.23 s 263 106 0.9 s 265 106 21 s 264 106 37 ms 262 106 21 ms 260 106 3.6 ms 259 105 0.5 s 258 105 4.4 s 105 260 105 1.5 s 261 105 1.8 s 262 105 34 s 263 105 27 s 267 105 73.4 h 268 105 15.9 h 266 105 22 m 267 104 77 m 258 104 12 ms 257 104 4.0 s 104 259 104 3.0 s 260 104 21 ms 261 104 2 s, 78 s 285 114 0.12 s 281 112 97 ms 277 110 5.7 ms 273 108 0.25 s 269 106 130 s 265 104 105 s 277 108 3 ms 103 256 103 28 s 255 102 3.1 m 254 101 10 m 255 101 27 m 256 101 78 m 257 101 5.52 h 253 100 3 d 256 100 158 m 259 102 58 m 260 103 180 s 259 103 6.3 s 258 102 1.2 ms 257 103 0.65 s 258 103 3.9 s 256 102 2.91 s 257 102 25 s 102 101 100 254 100 3.2 h 255 100 20 h 257 100 100 d 258 101 51.5 d 261 103 39 m 262 103 216 m 260 102 0.11 s 259 101 96 m 258 100 370  s 259 100 1.5 s 260 101 31.8 d 290 116 14 ms 271 108 4 s 263 104 8 s 294 118 1 ms 293 116 53 ms 292 116 18 ms 291 116 18 ms 287 114 0.45 s 289 114 2.70 s 288 114 0.80 s 286 114 0.12 s 282 112 0.8 ms 284 112 0.10 s 283 112 3.83 s 285 112 33.5 s 275 108 0.19 s 271 106 114 s 281 110 9.6 s 279 110 0.20 s 266 106 0.32 s 267 106 84 s 293 117 14 ms 289 115 0.22 s 285 113 5.5 s 281 111 26 s 294 117 78 ms 290 115 16 ms 286 113 20 s 282 111 0.51 s 278 109 7.7 s 274 107 0.9 m 270 105 23 h 262 104 0.19 s

4

5 Berkeley Gas-filled Separator (BGS)

6 Positive: High efficiency Large suppression of beam and unwanted reaction products

7 Berkeley Gas-filled Separator (BGS) Negatives: Large focal plane image Poor mass resolution High gamma background at focal plane

8 118 117 116 288 115 88 ms 287 115 32 ms 115 114 282 113 61 ms 284 113 0.48 s 283 113 0.10 s 278 113 2 ms 113 277 112 0.7  s 112 278 111 4 ms 280 111 3.59 s 279 111 0.17 s 274 111 15 ms 272 111 3 ms 111 269 110 130  s 110 270 110 3 ms 271 110 12 ms 273 110 170  s 276 109 0.72 s 275 109 10 ms 274 109 2.91 s 266 109 2 ms 109 268 109 25 ms 270 109 3 ms 269 108 14 s 268 108 0.37 s 267 108 68 ms 266 108 4 ms 265 108 2 ms 263 108 23 ms 262 108 260  s 108 270 108 23 s 262 107 0.10 s 261 107 12 ms 260 107 32 ms 107 266 107 1 s 265 107 0.94 s 264 107 0.11 s 267 107 17 s 270 107 61 s 272 107 9.79 s 106 259 106 0.48 s 261 106 0.23 s 263 106 0.9 s 265 106 21 s 264 106 37 ms 262 106 21 ms 260 106 3.6 ms 259 105 0.5 s 258 105 4.4 s 105 260 105 1.5 s 261 105 1.8 s 262 105 34 s 263 105 27 s 267 105 73.4 h 268 105 15.9 h 266 105 22 m 267 104 77 m 258 104 12 ms 257 104 4.0 s 104 259 104 3.0 s 260 104 21 ms 261 104 2 s, 78 s 285 114 0.12 s 281 112 97 ms 277 110 5.7 ms 273 108 0.25 s 269 106 130 s 265 104 105 s 277 108 3 ms 103 256 103 28 s 255 102 3.1 m 254 101 10 m 255 101 27 m 256 101 78 m 257 101 5.52 h 253 100 3 d 256 100 158 m 259 102 58 m 260 103 180 s 259 103 6.3 s 258 102 1.2 ms 257 103 0.65 s 258 103 3.9 s 256 102 2.91 s 257 102 25 s 102 101 100 254 100 3.2 h 255 100 20 h 257 100 100 d 258 101 51.5 d 261 103 39 m 262 103 216 m 260 102 0.11 s 259 101 96 m 258 100 370  s 259 100 1.5 s 260 101 31.8 d 290 116 14 ms 271 108 4 s 263 104 8 s 294 118 1 ms 293 116 53 ms 292 116 18 ms 291 116 18 ms 287 114 0.45 s 289 114 2.70 s 288 114 0.80 s 286 114 0.12 s 282 112 0.8 ms 284 112 0.10 s 283 112 3.83 s 285 112 33.5 s 275 108 0.19 s 271 106 114 s 281 110 9.6 s 279 110 0.20 s 266 106 0.32 s 267 106 84 s 293 117 14 ms 289 115 0.22 s 285 113 5.5 s 281 111 26 s 294 117 78 ms 290 115 16 ms 286 113 20 s 282 111 0.51 s 278 109 7.7 s 274 107 0.9 m 270 105 23 h 262 104 0.19 s

9

10 Scheme What we want to do: Collect recoils at focal plane of BGS Separate by mass Transport low-background region

11 Space Available 6 ft Cave 2 Beamline BGS Concrete Walls Support Beams

12 ANL Built Berk. Built Scheme BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box What we want to do: Collect recoils at focal plane of BGS Separate by mass Transport low-background region

13 > 2 μm metal foil with support grid Window BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

14 He ~ 100 mbar RF + DC SHE ion retains +1 or +2 charge Cylindrical and conical section Pitch > 0.5 mm, f ~ 1 MHz SHE ions swept out by gas flow Gas Catcher BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

15 Match acceptance for mass analyzer RFQ Trap BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

16 Current design based off of segmented rfq Current ion transport simulations agree with velocity distribution and axial distribution approx. Simulations (w/ current exp. param) match current beam properties Is this sufficient? New designs are being explored to minimize timing pulse width RFQ Trap BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

17 Mass Analyzer: Requirements Fit at least 6 masses on C 3 Ability to determine implantation time High dispersion M/  M of >500 High efficiency Low extraction voltage from RFQ Fit within existing space BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

18 Mass Analyzer: The Idea Typical mass separators Wien filter TOF 90-180° Magnet Trochoid Separator - FIONA BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

19 Mass Analyzer: The Idea BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

20 Mass Analyzer: The Idea BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Ratio of E wien /E troc

21 FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 500 V/cm Magnet 1.5 T x A= 300 301 302 303 304 A = 300-305 V acc = 4000 keV Q = 2+

22 FIONA: Simulations Det. Box A= 300 301 302 303 304 BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Einzel Lens Magnet 1.5 T x Electrode: 50 x 20 cm, 500 V/cm A = 300-304 V acc = 4 kV Q = 2+

23

24 What it looks like on the FPD BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box A= 300 301 302 303 304

25 FIONA: Simulations Det. Box A= 300 301 302 303 304 BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Einzel Lens Magnet 1.5 T x Electrode: 50 x 20 cm, 500 V/cm A = 300-305 V acc = 4000 kV Q = 2+

26 How to get time information BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box A= 300 301 302 303 304

27 Facility Layout 6 ft Cave 2 Beamline BGS Concrete Walls Support Beams

28 Mass Analyzer: Requirements Fit at least 6 masses on C 3 Ability to determine implantation time High dispersion M/  M of >500 High efficiency Low extraction voltage from RFQ Fit within existing space BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

29 Status and Future Currently building little-FIONA –0.55 T magnet –Xe ion source –MCP detector

30 FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 125 V/cm Magnet 0.5 T x A= 130 131 132 133 134 A = 130-134 Vacc = 1 kV Q = 1+

31 FIONA: Simulations BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box Einzel Lens Electrode: 50 x 20 cm, 125 V/cm Magnet 0.5 T x A= 130 131 132 133 134 A = 130-134 Vacc = 1 kV Q = 1+

32 What it looks like on the FPD BGSWindow Gas Catcher RFQ Trap 1 RFQ Trap 2 Extr. Accel. Mass Anal. Det. Box

33 Status and Future Currently building little-FIONA –Xe ion source –0.55 T magnet –MCP detector All parts have been ordered/designed Testing and construction will begin in June

34 Thank For Your Attention


Download ppt "Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche."

Similar presentations


Ads by Google