Download presentation
Presentation is loading. Please wait.
Published byGriffin Warren Modified over 8 years ago
1
Precision spectroscopy of trapped HfF + with a coherence time of 1 second Kevin Cossel JILA eEDM collaboration
2
An eEDM violates P and T-reversal symmetry The eEDM has very small Standard Model theory background so is a good test of new physics |d e | < 9 x 10 -29 e cm ACME [Science (2014)] d e [e cm] 10 -38 10 -28 10 -30 10 -32 10 -34 10 -36 10 -40 Extensions to the Std. Model Standard Model 10 -26 Test extensions to the Standard Model Tests of particle physics at the 10 TeV level
3
Measure with electron spin resonance _ Measurement precision:
4
Trapped molecular ions Long coherence time Large effective electric field Use low-lying 3 1 level Use many ions for better statistics Thermal (1-10 K) cloud reduces systematics due to many ions Meyer, Bohn, Deskevich, PRA 73, 062108 (2006) Leanhardt et al, J. Mol. Spectrosc. 270, 1-25 (2011)
5
Experimental setup ~10 cm End cap (+V) Linear Paul trap confines HfF + : RF micromotion at rf = 2 (50 kHz) Secular trap motion at ~ 2 (4 kHz) Rotating bias field at rot = 2 (250 kHz) Anti-Helmholtz coils
6
Experimental setup ~10 cm End cap (+V) Linear Paul trap confines HfF + : RF drive frequency of 50 kHz Secular trap frequency ~ 4 kHz Anti-Helmholtz coils Bias field rotates at 250 kHz
7
E (cm -1 ) 0 16,000 1+1+ 3131 3232 3333 1212 3131 1111 3 0+ 3 0- 3 0+ 3232 3333 v=0 v=1 J=1 J=2 F=3/2 F=1/2 HfF + energy levels
8
3 1 J=1, F=3/2 -1/2 1/23/2 m F =-3/2
9
3 1 J=1, F=3/2 E lab -1/2 1/23/2 m F =-3/2
10
3 1 J=1, F=3/2 BrBr E lab -1/2 1/23/2 m F =-3/2
11
-1/2 1/23/2 3 1 J=1, F=3/2 m F =-3/2 |d e |>0 3g u μB + 2d e E eff E eff ~ 24GV/cm 3g l μB - 2d e E eff BrBr E lab Zeeman co-magnetometer (DeMille AIP Conf Proc. 596, 72 (2001))
12
Experimental Sequence: Transfer Hf F F F F + + t Transfer
13
t m F Depletion Hf F F +
14
/2 pulse π/2 t Transfer Hf F F F F + +
15
Free evolution π/2 t Transfer Hf F F F F + + E = 3g u μB + 2d e E eff
16
/2 pulse Hf F F F F + + π/2 t Transfer
17
m F Depletion π/2 t Transfer Hf F F +
18
Population Readout π/2 t Photodissociation Dump ions Transfer Hf F F +
19
Ramsey fringes Fractional population difference Free-evolution time (ms) > 1 s
20
-B-B +B Upper Doublet Lower Doublet f BD = ¼ x [(f u (B) – f u (-B)) – (f l (B) – f l (-B))] = 2 d e E eff = 0.09(33) Hz d e < 8 x 10 -27 e cm
21
Example sequence
22
eEDM measurements d e < 2.6 x 10 -28 e cm
23
Systematic errors Other linear combinations: Also switch rotation direction No systematics observed in f BD : Added static B fields Shifted trap center Different E rot
24
Outlook Current statistical sensitivity: 3 x 10 -28 e cm in 100 hours Evaluating systematic errors Short-term improvements (4x better sensitivity): Longer coherence time Improve transfer and detection efficiency Long-term use ThF + Ground state 3 1 < 1 x 10 -29 e cm
25
Thank you! Matt Grau Will Cairncross Dan Gresh Yan Zhou Yiqi Ni Jun Ye Eric Cornell Huanqian Loh Kang-Kuen Ni Aaron Leanhardt Russ Stutz Laura Sinclair Tyler Coffey Tyler Yahn Bob Field John Bohn Ed Meyer Chris Greene Jia Wang St Petersberg
27
Rotating E and B field E-field defines quantization axis Excellent rejection of lab-frame residual B-field.
28
/2 pulse details II Erot t Depletion 1 23 4 1 2 3 4
29
fBD vs fB for stray gradients
30
Ion-ion collisions Electric field from collision results in Berry’s phase High U kin (T) single collisions cause decoherence Low T phase diffusion To increase coherence time: Lower density Lower temperature Increase E rot
31
Berry’s phase Geometrical (Berry’s) phase due to rotating quantization axis F
32
3.2 mHz 2.8 x 10^-28 e- cm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.