Presentation is loading. Please wait.

Presentation is loading. Please wait.

Organic Pedagogical Electronic Network Applications of C–H Functionalization in Total Synthesis Sorensen Lab, Princeton University.

Similar presentations


Presentation on theme: "Organic Pedagogical Electronic Network Applications of C–H Functionalization in Total Synthesis Sorensen Lab, Princeton University."— Presentation transcript:

1 Organic Pedagogical Electronic Network Applications of C–H Functionalization in Total Synthesis Sorensen Lab, Princeton University

2 Approaches to (–)-tetrodotoxin ■ Highly functionalized/oxidized architecture has inspired many synthetic approaches ■ The mild and chemoselective nature of C–H functionalization methods reduces or removes the need for protecting groups in synthetic planning Kishi, Y.; Fukuyama, T.; Aratani, M.; Nakatsubo, F.; Goto, T.; Inoue, S.; Tanino, H.; Sugiura, S.; Kakoi, H. J. Am. Chem. Soc. 1972, 94, 9219-9221. Ohyabu, N.; Nishikawa, T.; Isobe, M. J. Am. Chem. Soc. 2003, 125, 9798-8805. Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511. Sato, K.-i.; Akai, S.; Shoji, H.; Sugita, N.; Yoshida, S.; Nagai, Y.; Suzuki, K.; Nakamura, Y.; Kajihara, Y.; Funabashi, M.; Yoshimura, J. J. Org. Chem. 2008, 73, 1234-1242.

3 Du Bois Synthesis of (–)-tetrodotoxin Hinman, A.; Du Bois, J. J. Am. Chem. Soc. 2003, 125, 11510-11511 ■ Selection of D-isoascorbic acid introduced two stereocenters ■ Early incorporation of requisite oxidation obviated need to perform oxidations in subsequent steps ■ C-H functionalization establishes two key stereocenters utilizing pre-existing functional group handles

4 Approaches to (+)-lithospermic acid ■ C-H functionalization features prominently in both approaches ■ Yu chemistry offers potentially greater flexibility toward lithospermic acid framework ■ Yu synthesis does not require the installation and removal of unnecessary functional groups to direct C-H functionalization events Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767-5769. O’Malley, S. J.; Tan, K. L.; Watzke, A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2005, 127, 13496-13497. Wang, H.; Li, G.; Engle, K. M.; Yu, J.-Q.; Davies, H. M. L. J. Am. Chem. Soc. 2013, 135, 6774-6777.

5 Yu Synthesis of (+)-lithospermic acid Wang, D.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 5767-5769

6 Approaches to (–)-colombiasin A and (–)-elisapterosin B Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485-2490. Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Angew. Chem. Int. Ed. 2001, 40, 2482-2486. Nicolaou, K. C.; Vassilikogiannakis, G.; Mägerlein, W.; Kranich, R. Chem. Eur. J. 2001, 7, 5359-5371. Kim, A. I.; Rychnovsky, S. D. Angew. Chem. Int. Ed. 2003, 42, 1267-1270. Harrowven, D. C.; Pascoe, D. D.; Demurtas, D.; Bourne, H. O. Angew. Chem. Int. Ed. 2005, 44, 1221-1222.

7 Davies Synthesis of (–)-colombiasin A and (–)-elisapterosin B Davies, H. M. L.; Dai, X.; Long, M. S. J. Am. Chem. Soc. 2006, 128, 2485-2490 ■ Catalyst control of C-H insertion/Cope reaction process leads to a fortuitous resolution of racemic starting material! Enantiotopic C-H bonds lead to two very different products!

8 Questions 1. What potential advantages does the use of C-H functionalization provide a synthetic chemist? 2. Propose a full, arrow-pushing mechanism for the C-H insertion/Cope reaction utilized by the Davies lab in their syntheses of colombiasin and elisapterosin.


Download ppt "Organic Pedagogical Electronic Network Applications of C–H Functionalization in Total Synthesis Sorensen Lab, Princeton University."

Similar presentations


Ads by Google