Presentation is loading. Please wait.

Presentation is loading. Please wait.

ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino.

Similar presentations


Presentation on theme: "ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino."— Presentation transcript:

1 ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino

2 Dynamics

3 task space joint  Dynamics studies the relations between the task space forces/torques and the joint forces/torques in non-static equilibrium, i.e., when the robot moves  The dynamic model equation can be obtained applying two main approaches Lagrange equations based on energy functions Newton-Euler equations based on the equilibrium of the vector forces  The first approach is conceptually simpler and will be adopted here  The second approach is more efficient for implementation of recursive computer algorithms; only a brief review of this approach will be presented here 3 ROBOTICS 01PEEQW - 2015/2016 Dynamics – 1

4  The dynamic equations of the robot can be obtained adopting the Lagrange approach  The derived state-space differential equations represent the robot dynamical model  Why state equations are necessary? Used for control design Used for robot simulation Used to implement model identification or parameter estimation algorithms 4 ROBOTICS 01PEEQW - 2015/2016 Dynamics – 2

5 5 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 1

6 6 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 2

7 7 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 3

8 8 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 4

9 9 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 5

10 10 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 6

11 11 ROBOTICS 01PEEQW - 2015/2016 Newton-Euler approach – 7

12 12 ROBOTICS 01PEEQW - 2015/2016 Lagrange equations – 1

13 13 ROBOTICS 01PEEQW - 2015/2016 Lagrange equations – 2

14 14 ROBOTICS 01PEEQW - 2015/2016 Lagrange equations – 3

15 15 ROBOTICS 01PEEQW - 2015/2016 Lagrange equations – 4

16 16 ROBOTICS 01PEEQW - 2015/2016 Kinetic Energy – 1

17 17 ROBOTICS 01PEEQW - 2015/2016 Kinetic Energy – 2

18 18 ROBOTICS 01PEEQW - 2015/2016 Kinetic Energy – 3 First form for the Kinetic Energy

19 19 ROBOTICS 01PEEQW - 2015/2016 Kinetic Energy – 1 Second form for the Kinetic Energy

20 20 ROBOTICS 01PEEQW - 2015/2016 Potential Energy – 1

21 21 ROBOTICS 01PEEQW - 2015/2016 Potential Energy – 2

22 22 ROBOTICS 01PEEQW - 2015/2016 Potential Energy – 3

23 23 ROBOTICS 01PEEQW - 2015/2016 Generalized forces – 1

24 24 ROBOTICS 01PEEQW - 2015/2016 Generalized forces – 2

25 25 ROBOTICS 01PEEQW - 2015/2016 Generalized forces – 3

26 26 ROBOTICS 01PEEQW - 2015/2016 Final equations – 1

27 27 ROBOTICS 01PEEQW - 2015/2016 Final equations – 2

28 28 ROBOTICS 01PEEQW - 2015/2016 Final equations – 3

29 29 ROBOTICS 01PEEQW - 2015/2016 Physical interpretation – 1 2 1 43 5

30 30 ROBOTICS 01PEEQW - 2015/2016 Physical interpretation – 2 1 2 3 4 5

31 31 ROBOTICS 01PEEQW - 2015/2016 Properties of the Lagrange Equations – 1

32 32 ROBOTICS 01PEEQW - 2015/2016 Properties of the Lagrange Equations – 2

33 33 ROBOTICS 01PEEQW - 2015/2016 Properties of the Lagrange Equations – 3

34 34 ROBOTICS 01PEEQW - 2015/2016 Dynamic calibration – 1

35  Collecting all data one obtains 35 ROBOTICS 01PEEQW - 2015/2016 Dynamic calibration – 2  The linear least square solution is then computed, as follows

36 36 ROBOTICS 01PEEQW - 2015/2016 State equations – 1

37 37 ROBOTICS 01PEEQW - 2015/2016 State equations – 2

38 38 ROBOTICS 01PEEQW - 2015/2016 Direct and inverse dynamics

39 39 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 1

40 40 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 2

41 41 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 3

42 42 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 4

43 43 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 5

44 44 ROBOTICS 01PEEQW - 2015/2016 Numerical recursive algorithms – 6

45  Dynamics equations are essential for modeling and control purposes  Modeling is easier to understand adopting the Lagrange energy function  Computer program are more efficient if they implement recursive Newton-Euler approach  Nonlinear state equations have this form 45 ROBOTICS 01PEEQW - 2015/2016 Conclusions Nonlinearities Products, squares, trigonometric functions here


Download ppt "ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino."

Similar presentations


Ads by Google