Download presentation
Presentation is loading. Please wait.
Published byLuke Marshall Modified over 8 years ago
1
Calibration of Under Water Neutrino Telescope ANTARES Garabed HALLADJIAN October 15 th, 2008 GDR Neutrino, CPPM, Marseille
2
15/10/2008GDR Neutrino - G. Halladjian2 Presentation plan Introduction Time calibration –Dark room calibration –In situ calibration Efficiency control Acoustic positioning system Conclusion
3
15/10/2008GDR Neutrino - G. Halladjian3 Introduction Good neutrino astronomy = Good angular resolution neutrino telescope
4
15/10/2008GDR Neutrino - G. Halladjian4 Introduction Good neutrino astronomy = Good angular resolution neutrino telescope = Good calibration
5
15/10/2008GDR Neutrino - G. Halladjian5 Detection principle neutrino muon interaction Cherenkov light earth water 3D OM network neutrino
6
15/10/2008GDR Neutrino - G. Halladjian6 Detection principle neutrino muon interaction Cherenkov light earth water 3D OM network 1.Time 2.Positions 3.Charge
7
15/10/2008GDR Neutrino - G. Halladjian7 ANTARES ν -telescope 2475m 450m 70m 12 lines 25 stories 3 OM
8
15/10/2008GDR Neutrino - G. Halladjian8 Storey components Hydrophone: acoustic positioning Optical Module: 10” Hamamatsu PMT in 17” glass sphere ( TTS 1.3 ns) photon detection Local Control Module (in Ti cylinder): Front-end ASIC, DAQ/SC, DWDM, Clock, tilt/compass, power distribution… Optical Beacon with blue LEDs: timing calibration
9
15/10/2008GDR Neutrino - G. Halladjian9 Angular resolution Angular resolution better than 0.3° above a few TeV, limited by: Light scattering + chromatic dispersion in sea water: σ ~ 1.0 ns TTS in photomultipliers: σ ~ 1.3 ns Electronics + time calibration: σ < 0.5 ns OM position reconstruction: σ < 10 cm (↔ σ < 0.5 ns) dominated by reconstruction rec − true rec − dominated by kinematics
10
15/10/2008GDR Neutrino - G. Halladjian10 Time calibration Internal clock calibration system Optical Beacons K40 decay Internal Optical Module LEDs …
11
15/10/2008GDR Neutrino - G. Halladjian11 Local Control Modules LCM clock boards Link Cables 200-500 m fibre STARTSTOP TDC STARTSTOP GPS E/O/E TX RX Main Electro-Optical Cable 40 km from shore to Junction Box Single bidirectional fibre (1534 nm / 1549 nm) Junction Box 1 16 passive splitter String Control Module BIDI modules O/E and E/O converters by sectors (5 storeys) On-shore Station Clock distribution
12
15/10/2008GDR Neutrino - G. Halladjian12 Transit time measuring of principal EO cable In situ measurements of clock delay
13
15/10/2008GDR Neutrino - G. Halladjian13 σ ~ 9 ps Line 4, storey 16Line 12, storey 8 σ ~ 11 ps Clock phase in situ measurements Individual relative delay measuring of clock for each storey
14
15/10/2008GDR Neutrino - G. Halladjian14 OM time calibration Dark room calibrationIn situ calibration
15
15/10/2008GDR Neutrino - G. Halladjian15 Optical fibers t0t0 t1t1 t2t2 t3t3 Optical Splitter Laser 532 nm Attenuator Filter Dark room calibration Apparatus check !
16
15/10/2008GDR Neutrino - G. Halladjian16 OMs calibration in dark room t (ns)
17
15/10/2008GDR Neutrino - G. Halladjian17 OMs calibration in dark room t (ns)
18
15/10/2008GDR Neutrino - G. Halladjian18 Optical beacon Optical Beacon with blue LEDs: timing calibration 36 LEDs λ = 470 nm Rise time ~ 1.9 ns FWHN ~ 5 ns
19
15/10/2008GDR Neutrino - G. Halladjian19 Led Optical Beacon: 32 blue LEDs synchronised flash < 0.5 ns Timing resolution of electronics <0.5ns Time difference between signals from 2 OMs in a storey Time in OMs relative to reference PMT in OB MILOM 15 m Intense light flash: PMT TTS contribution is negligible Optical beacon
20
15/10/2008GDR Neutrino - G. Halladjian20 Line 1 time calibration with MILOM LED beacon MILOM ~70 m ~150 m = 0.7 ns = 2.6 ns t [ns] "horizontal" "diagonal" larger distance less intensity light scattering All timing measurements in good agreement with expectations Line 1
21
15/10/2008GDR Neutrino - G. Halladjian21 Light attenuation measured by optical LED beacons
22
15/10/2008GDR Neutrino - G. Halladjian22 Light attenuation measured by optical LED beacons
23
15/10/2008GDR Neutrino - G. Halladjian23 Optical fibres Laser On shore laser system In sea LED beacon system LED beacon RMS 0.74ns RMS 0.60ns Time calibration
24
15/10/2008GDR Neutrino - G. Halladjian24 In situ calibration with K40 40 K 40 Ca e-e- Cherenkov photons Gaussian peak on coincidence plot Peak time offset : Cross check of time calibration Integral under peak = rate of correlated coincidences High precision (~5%) monitoring of OM efficiencies MC prediction =13 ± 4 Hz
25
15/10/2008GDR Neutrino - G. Halladjian25 Coincidence on 2 storeys 2 pairs of coincidences in adjacent storeys ±20 ns in same storey
26
15/10/2008GDR Neutrino - G. Halladjian26 Calibration with down-going muons 2 pairs of coincidences in adjacent storeys ±100 ns between storey Preliminary
27
15/10/2008GDR Neutrino - G. Halladjian27 Relative positioning of detector Z(m) r(m) Example for Sea current V = 25 cm/s r max = 22 m
28
15/10/2008GDR Neutrino - G. Halladjian28 Autonomous Transponder Transmitter Receiver 5 + 1 Receiver / line Acoustic positioning system
29
15/10/2008GDR Neutrino - G. Halladjian29 Acoustic positioning system Frequency = 40 – 60 kHz Accuracy < 10 cm Acoustic cycle: Successive emission of each BSS in each second Simultaneous measure of acoustic propagation times between each transmitter and all hydrophones 3D position determination of each hydrophone using all RxTx Rx distances of acoustic cycle (global positioning each 2 minutes)
30
15/10/2008GDR Neutrino - G. Halladjian30 Acoustic components After current correction Transmitter / Receiver Pressure sensor Celerimeter CCTD Receiver Current velocity Pressure E. Conductivity Temperature
31
15/10/2008GDR Neutrino - G. Halladjian31 Sound Velocity
32
15/10/2008GDR Neutrino - G. Halladjian32 Acoustic measurements of fixed distances After current correction L2→L3L3→L2average 5 mm
33
15/10/2008GDR Neutrino - G. Halladjian33 Acoustic measurements of fixed distances After current correction L2→L3L3→L2average 5 mm + + = =
34
15/10/2008GDR Neutrino - G. Halladjian34 Acoustic measurements of fixed distances After current correction L2→L3L3→L2average 5 mm
35
15/10/2008GDR Neutrino - G. Halladjian35 Hydrophone : Ligne 4 étage 25 Emission RxTx ligne 5Emission transpondeur Acoustic measurements of hydrophone distances
36
15/10/2008GDR Neutrino - G. Halladjian36 Acoustic triangulation of hydrophones
37
15/10/2008GDR Neutrino - G. Halladjian37 Acoustic triangulation of hydrophones
38
15/10/2008GDR Neutrino - G. Halladjian38 Radial displacement Acoustic triangulation of hydrophones
39
15/10/2008GDR Neutrino - G. Halladjian39 Storey 1 Storey 8 Storey 14 Storey 20 Storey 25 Radial displacement Acoustic triangulation of hydrophones
40
15/10/2008GDR Neutrino - G. Halladjian40 Radial displacement
41
15/10/2008GDR Neutrino - G. Halladjian41 BSS absolute positions BSS position are measured by the boat Boat position are measured by satellites DGPS LF LBL (σx σy ~ 1m)
42
15/10/2008GDR Neutrino - G. Halladjian42 Before triangulation
43
15/10/2008GDR Neutrino - G. Halladjian43 Before triangulation 7 m
44
15/10/2008GDR Neutrino - G. Halladjian44 BSS position uncertainty Before triangulation
45
15/10/2008GDR Neutrino - G. Halladjian45 BSS position uncertainty Before triangulation
46
15/10/2008GDR Neutrino - G. Halladjian46 BSS position uncertainty Before triangulation
47
15/10/2008GDR Neutrino - G. Halladjian47 BSS position uncertainty Before triangulation
48
15/10/2008GDR Neutrino - G. Halladjian48 BSS absolute positions Distances between BSSs (acoustic distances) decrease the uncertainty on BSS positions. DGPS HF
49
15/10/2008GDR Neutrino - G. Halladjian49 BSS position uncertainty Before triangulationAfter triangulation
50
15/10/2008GDR Neutrino - G. Halladjian50 BSS position uncertainty Before triangulationAfter triangulation
51
15/10/2008GDR Neutrino - G. Halladjian51 Before triangulation 7 m
52
15/10/2008GDR Neutrino - G. Halladjian52 After triangulation 7 m
53
15/10/2008GDR Neutrino - G. Halladjian53 Angular Error due to BSS σ (horizontal) = 0.13 degree σ (vertical) = 0.02 degree
54
15/10/2008GDR Neutrino - G. Halladjian54 Conclusion ANTARES is complete and working very well Detector calibration is permanently controlled in situ Calibration performance agree with expectation: –Time uncertainty < 0.5 ns –Position uncertainty < 10 cm ANTARES should reach its excellent angular resolution ~ 0.3 o
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.