Download presentation
Presentation is loading. Please wait.
Published byColin Boyd Modified over 8 years ago
1
1 First Results from CLEO-c Thomas Coan CLEO-c Physics Program D + + Decays Absolute Br(D hadrons) e + e - (DD) Southern Methodist University CLEO Collaboration Summary
2
2 CLEO-c Physics Focus Heavy Flavor Physics: “overcome QCD roadblock” Leptonic decays decay constants Semileptonic decays Vcd, Vcs, V_CKM unitarity check, form factors Absolute D Br’s normalize B physics Test QCD techniques in c sector, apply to b sector improved Vub, Vcb, Vtd, Vts Physics beyond SM: where is it? CLEO-c: D-mixing, charm CPV, charm/tau rare decays. CLEO-c: precision charm absolute Br measurements CLEO-c: precise measurements of quarkonia spectroscopy & decay provide essential data to calibrate theory. Physics beyond SM will have nonperturbative sectors
3
3 Why Charm Threshold? Large production , low decay multiplicity Pure initial state (DD): “no” fragmentation Double tag events: “no” background Clean neutrino reconstruction Quantum coherence: aids D-D mixing and CPV studies
4
4 CLEO-c Run Plan 2004: (3770) – 3 fb -1 18M DD events, w/ 3.6M tagged D decays (150 times MARK III) 2005: s 4100 MeV – 3 fb -1 1.5M D s D s events, w/ 0.3M tagged D s decays (480 times MARK III, 130 times BES) 2006: (3100) – 1 fb -1 1 Billion J/ decays (170 times MARK III, 15 times BES II)
5
5 Tagging Technology Pure DD/D s D s production: (3770) DD s ~4140 D s D s Large branching fractions (~1-15%) High reconstruction efficiency High net tagging efficiency ~20% M(D) MC
6
6 Absolute Br’s w/ Double Tags ~ Zero bkgnd in hadronic modes Mode s (GeV)PDG2k CLEOc ( B/B %) ( B/B %) D 0 K - + 3770 2.4 0.6 D + K - + + 3770 7.2 0.7 D s 4140 25 1.9 MC M(D) (GeV/c 2 ) D 0 K D K w/ 3 fb 1 w/ D 0 tag w/ D tag
7
7 f Dq from Leptonic Decays ( D q l ) f_Dq 2 V_cq 2 w/ 3 fb-1 & 3-gen CKM unitarity: CLEO-c f/f PDG f/f ReactionDecay Constant f Ds Ds+ Ds+ 12%1.9% f D D+ D+ ~50%2.3% f Ds Ds+ Ds+ 33%1.6% Ds+ Ds+ D+ D+ KLKL |f D | 2 l |V CKM | 2 MC
8
8 Semileptonic Decays |V CKM | 2 |f(q 2 )| 2 = = V_cq 2 Br ( D P l ) / D V_cq 2 f(q 2 ) 2 d ( D P l ) / dq 2 MC D 0 l Kl U=E_miss P_miss 1 fb-1 q 2 (GeV 2 ) Measure f(q 2 ) 2 D 0 l D l D 0 K l Ds l Mode PDG04 ( B/B%)CLEOc ( B/B%) 16 3 0.4 48 25 1.0 2.0 3.1 V cd /V cd & V cs /V cs 1.6% V cd /V cd = 5.4% (PDG04) V cs /V cs = 9.3% (PDG04)
9
9 Probing QCD Gluons carry color charge binding: Glueballs = gg and Hybrids = qqg X c c ¯ Radiative decays: ideal glue factory CLEO-c: 10 J/ decays 60M J/ X Partial Wave Analysis Absolute Br’s: , KK, pp, ,... E.g.: f J (2220) MC CLEO-c: find/debunk f J (2220)
10
10 CLEO-c Detector B=1.0 T 93% of 4 E /E = 2% @1GeV = 4% @100MeV 85% of 4 p>1 GeV 83% of 4 % Kaon ID with 0.2% fake @0.9GeV Data Acquisition: Event size = 25kB Thruput 6MB/s Trigger : Tracks & Showers Pipelined Latency = 2.5 s 93% of 4 p /p = 0.3% @1GeV dE/dx: 5.7% @minI
11
11 Leptonic Decays: D + + Br(D q l ) = m 2l2l 2 m_D q ( 1 - ) f_D q |V cq | _D q 2 2 2l2l 88 GFGF 2 m_D q m Strong Physics Weak Physics f D+ provides “iron post of observation” for Lattice QCD “Calibrated” Lattice QCD (f B /f D ) + f D f B f D+ useful for checking potential models Seek to measure f D+ f B + B-mixing m’ments |V td /V ts | precision
12
12 Single D Tag L dt = 57 pb 1 @ s = D tag side: D K + , K + , K s , K s , K s /K ID: dE/dx + RICH 0 recon: shower shape/location in CsI K s recon: kinematic fit to displaced vertex Key analysis variables: MM 2 = (E beam E ) 2 ( p D p ) 2 M D = E beam ( p i ) 2 2 2 Signal side: 1 track from event vertex, min_I in CsI “small” (< 250 MeV) neutral E in CsI no reconstructed K s e + e (3770) D+DD+D D-Tag side Signal side
13
13 K+K+ KsKs K + 0 Ks+Ks+ KsKs Data M D Distribution v. D Tag S: 28575 286 B: 8765 784
14
14 MM 2 Distribution v. D Tag MC (MM 2 ) 0.025 GeV 2
15
15 Leptonic Decays: Signal Region Data K s + + Tag 8 evts 0.024 0.002 GeV 2 0.021 0.001 GeV 2 D K s Check MC (MM 2 ) w/ data: D + K 0 + Scale MC (MM 2 ) w/ data: = (0.024/0.021) 0.025 = 0.028 GeV 2
16
16 Background + Results Br(D + + = N tag N sig Br(D + + = (3.5 1.4 0.6) x 10 4 f D+ = (201 41 17) MeV D Background: Mode# of Events D + + D + K + D + + D + + 0.31 0.04 0.06 0.05 0.36 0.08 negligible D 0 D 0 Background: 0.16 0.16 events Background estimates via MC e + e continuum: 0.17 0.17 events O’all Bkg: 1.07 0.25 events 1.07 1.07 events Preliminary & = 69.9% for D + + recon.
17
17 Br(D) & (DD) M’ment @ s = (3770) KK ++ ee e+e+ X D0D0 D0D0 KK ++ ee e+e+ D0D0 D0D0 K+K+ Single TagDouble Tag S = 2N DD B 1 D = N DD B 2 2 w/ 2 1 : 2 N DD = S2S2 4D S2S2 4DL (DD) = i.e., B & independent B = 2D S 11 22
18
18 Single and Double Tags D 0 K +, K + 0, K + + + c.c. D + K + +, K s + + c.c. Determine 5 Br’s and (e + e D 0 D 0 ) & (e + e D + D ) 10 Single Tag + 13 Double Tag modes Event selection similar to f D+ analysis Key analysis variables: E = E beam E i M BC = (E beam ( p i ) 2 ) 2
19
19 Single and Double Tag Yields N(single tags) from ML fit to M_BC Line shape parameters from MC MC D 0 K + Data D 0 K + D and D fit together: same signal param’s, indep. bkg. Data N(double tags) from 2-D ML fit to 2-D M_BC K + 0 v. K + 0
20
20 Fit Results for Br(D) and (DD) Fit Input: S.T. & D.T. yields, _tag, _bkg + errors 2 /ndof = 9.0/16, C.L. = 91.4% 2 fit to account for correlations btwn single/double tags, bkg Fit Output: Br(D 0 K + ), Br(D 0 K + 0 ), Br(D 0 K + + ) Br(D + K + + ), Br(D + K s +) and N(D 0 D 0 ), N(D + D ) Br(D0 K +) = 0.039 ? ? Br(D0 K + 0) = 0.130 ? ? Br(D0 K + +) = 0.081 ? ? Br(D+ K + +) = 0.098 ? ? PDG04 CLEO-c Preliminary N(D0D0) = 1.98 x10 5 (D0D0) = 3.47 0.07 0.15 nb N(D+D ) = 1.48 x10 5 (D+D ) = 2.50 0.11 0.11 nb Br(D+ Ks +) = 0.016 ? ? (DD) = 6.06 0.13 0.22 nb Need pdg comp
21
21 Summary I need nicer plots for Br(D hadrons)
22
22 Backup
23
23 1.5 T 1.0T 93% of 4 p /p = 0.35% @1GeV dE/dx: 5.7% @minI 93% of 4 E /E = 2% @1GeV = 4% @100MeV 83% of 4 % Kaon ID with 0.2% fake @0.9GeV 85% of 4 p>1 GeV Trigger : Tracks & Showers Pipelined Latency = 2.5 s Data Acquisition: Event size = 25kB Thruput 6MB/s CLEO III Detector CLEO-c Detector
24
24 J/ X Inclusive - Spectrum MC Inclusive -spectrum Search for monochromatic E.g., 24% efficient for f J (2220) 10 sensitivity for narrow resonances Modern 4 detector Suppress hadronic bkgnd: J/ X Huge data set Plus and (1S) data Determine J PC and gluonic content
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.