Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charm quark in nuclear systems Strangeness and charm hadron Tokai, 3-7 Aug. 2015 S. Yasui Tokyo Tech.

Similar presentations


Presentation on theme: "Charm quark in nuclear systems Strangeness and charm hadron Tokai, 3-7 Aug. 2015 S. Yasui Tokyo Tech."— Presentation transcript:

1 Charm quark in nuclear systems Strangeness and charm hadron physics@KEK Tokai, 3-7 Aug. 2015 S. Yasui Tokyo Tech.

2 References S.Y., K.Sudoh, Phys. Rev. D80, 034008 (2009) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D84, 014032 (2011) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D85, 054003 (2013) Y.Yamaguchi, S.Y., A.Hosaka, Nucl. Phys. A927, 110 (2014) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D87, 074019 (2013) S.Y., K.Sudoh, Y.Yamaguchi, S.Ohkoda, A.Hosaka, T.Hyodo, Phys. Lett. B727, 185 (2013) Y.Yamaguchi, S.Ohkoda, T.Hyodo, A.Hosaka, S.Y., arXiv:1402.5222 [hep-ph] S.Y., K.Sudoh, Phys. Rev. C89, 015201 (2014) HQS doublet/singlet in exotic hadrons and nuclei P ( * ) N, P ( * ) NN hadronic molecules NLO in 1/m Q expansion for P ( * ) in nuclear matter P ( * ) N hadronic molecules P ( * ) in nuclear matter and Kondo effects S.Y., K.Sudoh, Phys. Rev. C87, 015202 (2013) S.Y., K.Sudoh, Phys. Rev. C88, 015201 (2013)

3 1. Hadron-nucleon interaction 1. Multi-flavor nucleus Nucleus + Strangeness 2. Hadron in medium 3. Nuclear structure

4 1. Hadron-nucleon interaction 1. Multi-flavor nucleus Nucleus + Charm 2. Hadron in medium 3. Nuclear structure Mass hierarchy (m c >>Λ QCD ) ~1.2 GeV ~0.2 MeV

5 Λ(uds) → Λ c (udc) 1. Multi-flavor nucleus StrangenessCharm H.Bando, “Flavor Nuclei”, PTP Suppl. 81, 197 (1985) Charm baryon Λ c (udc)

6 Λ(uds) → Λ c (udc) 1. Multi-flavor nucleus K(qs) → D(qc) StrangenessCharm Repulsive (Chiral symmetry) Attractive (Heavy-quark spin symmetry) No quark-antiquark annihilation in nuclear medium

7 [6] K. Tsushima, D. -H. Lu, A. W. Thomas, K. Saito and R. H. Landau, Phys. Rev. C 59, 2824 (1999). [7] A. Sibirtsev, K. Tsushima and A. W. Thomas, Eur. Phys. J. A 6, 351 (1999). [15] T. Hilger, R. Thomas and B. Kampfer, Phys. Rev. C 79, 025202 (2009). [16] T. Hilger, R. Schulze and B. Kampfer, J. Phys. G G 37, 094054 (2010). [17] Z. -G. Wang and T. Huang, Phys. Rev. C 84, 048201 (2011). [18] A. Mishra, E. L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm and H. Stoecker, Phys. Rev. C 69, 015202 (2004). [19] M. F. M. Lutz and C. L. Korpa, Phys. Lett. B 633, 43 (2006). [20] L. Tolos, A. Ramos and T. Mizutani, Phys. Rev. C 77, 015207 (2008). [21] A. Mishra and A. Mazumdar, Phys. Rev. C 79, 024908 (2009). [22] A. Kumar and A. Mishra, Phys. Rev. C 81, 065204 (2010). [23] C. E. Jimenez-Tejero, A. Ramos, L. Tolos and I. Vidana, Phys. Rev. C 84, 015208 (2011). [24] A. Kumar and A. Mishra, Eur. Phys. J. A 47, 164 (2011). [25] C. Garcia-Recio, J. Nieves, L. L. Salcedo and L. Tolos, Phys. Rev. C 85, 025203 (2012). [26] S. Yasui, K. Sudoh, Phys. Rev. C87, 015202 (2013). [27] A. Hayashigaki, Phys. Lett. B487, 96 (2000) [28] K. Suzuki, P. Gubler, M. Oka, Pos Hadron2013, 179 (2014). [29] K. Azzi, N. Er, H. Sundu, Eur. Phys. J. C74, 3021 (2014). Quark-meson coupling modelQCD rum rule Mean field WT-type coupling Hadron dynamics π exchange -50 MeV [27] [26] -66 MeV [29] +30 MeV [28] 1. Multi-flavor nucleus D (B) meson in nuclear systems Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction),... Binding energy in nuclear matter [MeV]

8 Nucleus D, D* q c Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction),... 1. Multi-flavor nucleus D (B) meson in nuclear systems Binding energy Dispersion relation Spectral function Reaction etc. Heavy quark spin

9 Contents 1. Multi-flavor nucleus 2. Heavy quark symmetry 3. Application 1: Leading order in 1/m Q expansion 4. Application 2: Next-to-Leading order in 1/m Q expansion 5. Conclusion

10 2. Heavy quark symmetry Heavy quark spin in m Q →∞ is conserved. LO Manohar, Wise, Luke, Grinstein,... Heavy quark symmetry (HQS) 1/m Q expansion (positive energy state Q v with velocity v)

11 2. Heavy quark symmetry Heavy quark symmetry (HQS) Normal hadrons, exotic hadrons, hadronic molecules, exotic nuclei,... Naive picture in quark model HQS Heavy quark spin × Light quark and gluon total spin S Q =1/2 j Brown muck (Spin-complex) Total spin = j ± 1/2

12 2. Heavy quark symmetry HQS singlet (j=0) J + = 1/2 J + = j + 1/2 J - = j - 1/2 Hadron mass 1/m Q HQS doublet (j≠0) Heavy quark symmetry (HQS) Normal hadrons, exotic hadrons, hadronic molecules, exotic nuclei,... OR

13 π ρ K K* D D* B B* → HQS doublet 770 MeV 140 MeV 500 MeV 890 MeV 1870 MeV 2010 MeV 5280 MeV 5325 MeV 630 MeV390 MeV140 MeV 45 MeV Spin 1 Spin 0 2. Heavy quark symmetry

14 N Δ Σ Σ* ΣcΣc Σc*Σc* ΣbΣb Σb*Σb* 940 MeV 1230 MeV 1190 MeV 1385 MeV 2520 MeV 2455 MeV 5810 MeV 5830 MeV 290 MeV195 MeV65 MeV 20 MeV → HQS doublet Spin 1/2 Spin 3/2 2. Heavy quark symmetry Λ 1115 MeV ΛcΛc 2286 MeV ΛbΛb 5619 MeV → HQS singlet

15 Charm (bottom) exotic hadrons and nuclei HQS doublet!! Hadronic molecule (A=1) Nucleus (A: large) Nucleon D meson HQS doublet or singlet? Question c c

16 3. Application 1: Leading order in 1/m Q expansion Heavy hadron effective theory LO 1/m Q expansion in quark ⇄ 1/M expansion in hadron

17 3. Application 1: Leading order in 1/m Q expansion Qq H.Georgi, Phys. Lett. B240, 447 (1990) A.F.Falk, H.Georgi, B.Grinstein, Nucl. Phys. B343, 1 (1990) 1-1- 0-0- P*PP(*)P(*) or = D*DB*BQ=cQ=b same mass

18 3. Application 1: Leading order in 1/m Q expansion Qq H.Georgi, Phys. Lett. B240, 447 (1990) A.F.Falk, H.Georgi, B.Grinstein, Nucl. Phys. B343, 1 (1990) 0-0- 1-1-

19 3. Application 1: Leading order in 1/m Q expansion Qq H.Georgi, Phys. Lett. B240, 447 (1990) A.F.Falk, H.Georgi, B.Grinstein, Nucl. Phys. B343, 1 (1990) P(0 - ) P*(1 - ) π P(0 - ) π P*(1 - ) π kinetic terminteraction with pion HQS

20 3. Application 1: Leading order in 1/m Q expansion Qq Nucleon q Q q q q D ( * ) meson ← No quark-antiquark annihilation (very simple system!) Hadronic molecule HQS doublet or singlet? =P ( * ) π π

21 3. Application 1: Leading order in 1/m Q expansion Qq S-wave D-wave S-wave Tensor force and... (mixing of S-wave and D-wave, like in deuteron) π π S-wave π P(0 - )-P*(1 - ) mixing is important ! Hadronic molecule P P* P =P ( * ) N N N N  J P =1/2 - case Nucleon q Q q q q D ( * ) meson HQS doublet or singlet? Time π π

22 3. Application 1: Leading order in 1/m Q expansion P(*)NP(*)N Mass CharmBottomm Q →∞ B*N BN D*N DN 0 MeV 142 MeV 0 MeV 46 MeV 0 MeV PN, P*N π exchange N P(*)P(*) Isospin 0

23 3. Application 1: Leading order in 1/m Q expansion P(*)NP(*)N Mass CharmBottomm Q →∞ 3/2 - 1/2 - Predictions π exchange N P(*)P(*) Isospin 0 142 MeV 0 MeV 46 MeV 0 MeV

24 46 MeV 0 MeV 3. Application 1: Leading order in 1/m Q expansion Mass 1/2 - 3/2 - 1/2 - 3/2 - 1/2 - CharmBottomm Q →∞ P(*)NP(*)N Predictions HQS doublet D(*)ND(*)N B(*)NB(*)N π exchange N P(*)P(*) Isospin 0 J P =3/2 - : {PN( 2 D 3/2 ), P*N( 4 S 3/2 ), P*N( 4 D 3/2 ), P*N( 2 D 3/2 )} Feshbach resonance (Γ=18 MeV) 142 MeV 0 MeV

25 3. Application 1: Leading order in 1/m Q expansion P ( * ) NN Mass 0-0- 1-1- 0-0- 1-1- CharmBottomm Q →∞ 1-0-1-0- Predictions HQS doublet D ( * ) NN B ( * ) NN Argonne v 8 ’ pot. (with tensor force) AV8’ π π N N P(*)P(*) Isospin 1/2 142 MeV 0 MeV 46 MeV 0 MeV

26 3. Application 1: Leading order in 1/m Q expansion P ( * ) in nuclear matter P ( * ) meson P(*)P(*) P(*)P(*) P(*)P(*) NN -1 π π in-medium mass of P ( * ) in nuclear matter HQS doublet Cf. HQS singlet in “pion condensate” (Suenaga, He, Ma, Harada, PRC89, 068201 (2014)) Mass(P)=Mass(P*)

27 1/m Q expansion LONLO+ 4. Appl.2: Next-to-Leading order in 1/m Q expansion

28 Heavy hadron mass “parametrization” 1/m Q expansion at NLO Color electric gluon Color magnetic gluon 4. Appl.2: Next-to-Leading order in 1/m Q expansion NLO in 1/m Q expansion M.Neubert, Phys. Lett. B322, 419 (1994) 1/m Q Q gluon (magnetic) spin-flip ρ: nuclear matter density Coupling to magnetic gluon at 1/m Q “Non-perturbative” gluon

29 Can we calculate hadron state in nuclear medium from QCD? 4. Appl.2: Next-to-Leading order in 1/m Q expansion Very difficult, but…

30 Heavy hadron effective theory LO + NLO 4. Appl.2: Next-to-Leading order in 1/m Q expansion 1/m Q expansion in quark ⇄ 1/M expansion in hadron Question: what is NLO?

31 4. Appl.2: Next-to-Leading order in 1/m Q expansion Question: what is NLO? 1. Heavy quark symmetry is conserved at O(1). 2. Inv. under velocity rearrangement at O(1)+O(1/M). v → w = v + q/M ( q/M << 1 ) = How to construct effective Lagrangian? Luke, Manohar, PLB286, 348 (1992), Kitazawa, Kurimoto, PLB323, 65 (1994) v w = v - q/M H v (x) v-frame w-frame H w (x) “Velocity rearrangement” : Lorentz boost between v-frame and w-frame up to O(1/M) Heavy quark Light quark

32 4. Appl.2: Next-to-Leading order in 1/m Q expansion 2. Inv. under velocity rearrangement at O(1)+O(1/M). 3. Heavy quark symmetry breaking terms at O(1/M). v → w = v + q/M ( q/M << 1 ) = ≠ 1. Heavy quark symmetry is conserved at O(1). Heavy quark Light quark How to construct effective Lagrangian?

33 Kitazawa, Kurimoto, PLB323, 65 (1994) 4. Appl.2: Next-to-Leading order in 1/m Q expansion Heavy meson effective theory with 1/M corrections spin-flip (1/M) LO: g NLO: g/M, g 1 /M, g 2 /M, λ/M Some terms are constrained by invariance under velocity rearrangement. “Covariant” field for velocity-rearrangement

34 P ( * ) in nuclear matterBreaking of HQS 4. Appl.2: Next-to-Leading order in 1/m Q expansion P(*)P(*) P(*)P(*) P(*)P(*) g P*P*π = g + (g 1 + g 2 )/M ≠ g P*Pπ = g + (g 1 - g 2 )/M M P* = M-2 λ /M ≠ M P = M+6 λ /M particle-hole NN -1 π π

35 “Color electric gluon enhanced” “Color magnetic gluon suppressed” 4. Appl.2: Next-to-Leading order in 1/m Q expansion vacuum normal nuclear matter λ 1 (ρ) λ 2 (ρ,m c ) λ 2 (ρ,m b )

36 4. Appl.2: Next-to-Leading order in 1/m Q expansion Nucleus D, D* q c Heavy quark spin Probe gluon fields

37 5. Conclusion 1. We discuss heavy quark symmetry (HQS) at LO in 1/m Q expansion. 2. HQS gives doublet/singlet in mass spectrum in exotic heavy hadrons and nuclei. 4. Toward experiments at J-PARC, GSI-FAIR !! 3. Mass modifications and splitting of D and D* mesons are concerned with gluon in medium.

38 5. Conclusion Many open problems... - Relation to other fundamental aspects of QCD ? (Dynamical breaking of chiral symmetry, Quark Confinement,...) - Hadron-nucleon interaction ? Many-body physics ? (Pion exchange, Mean field approximation, Symmetry restoration,...) - What about atomic nucleus with charm ? - Lattice QCD: what QCD says about charm nucleus ? - Production cross sections of charm nucleus ? - etc.

39

40 Unitary transformation HQS doublet 4. Application to heavy-quark nuclear systems π exchange N P(*)P(*) 1/2 - is degenerate with 3/2 -. J P =1/2 -, 3/2 - {P ( * ) N( 2S+1 L J )} J P =1/2 - : {PN( 2 S 1/2 ), P*N( 2 S 1/2 ), P*N( 4 D 1/2 )} J P =3/2 - : {PN( 2 D 3/2 ), P*N( 4 S 3/2 ), P*N( 4 D 3/2 ), P*N( 2 D 3/2 )} K L : kinetic term (a.m. L) C: central potential T: tensor potential

41 Charm (bottom) exotic hadrons and nuclei Question Qqq HHHN 2n+1 HN 2n doublet singlet doublet singlet doublet singlet doublet Qq D, D* Σ c, Σ c * ΛcΛc ?

42 P* P P P 123 + = P ( * ) in nuclear matter π π particle- hole NN -1 * There is no PPπ vertex. A i ~ε ijk V j V k 4. Application to heavy-quark nuclear systems HQS doublet Cf. HQS singlet in “pion condensate” (Suenaga, He, Ma, Harada, Phys. Rev. C89, 068201 (2014)) M(P*)=M(P) P* meson P meson


Download ppt "Charm quark in nuclear systems Strangeness and charm hadron Tokai, 3-7 Aug. 2015 S. Yasui Tokyo Tech."

Similar presentations


Ads by Google