Download presentation
Presentation is loading. Please wait.
Published byBertina Welch Modified over 8 years ago
1
SPring-8 レーザー電子光 ビームラインでの タギング検出器の性能評価 核物理研究センター 三部 勉 LEPS collaboration 日本物理学会 近畿大学 2000.4.1 1.レーザー電子光 2.タギング検出器 3.実験セットアップ 4.エネルギー分解能 5.検出効率とバックグラウンドレート 6.まとめ
2
Laser 3.5eV Scattered photon (Laser Electron Photon) Energy Max 2.4GeV Intensity 1×10 7 /sec Linear/Circular polarization Backward Compton scattering Electron 8GeV Laser Electron Photon
3
Position of Scattered electron ( SSDch ) Photon Energy ( GeV ) Photon energy E = E e - E e’ Initial electron energy Scattered electron energy Analyzed by Bending Magnet Photon Tagging Measured by PWO calorimeter
4
Tagging counter (top view) Silicon Strip Detector ×2 (Analog readout,100 m pitch 640 ch) 1cm 8GeV electron beam Scattered electron Plastic scintillator ×20 (3mm(T),7.4mm(W),10 mm(H)) Energy Counter Timing Counter Accelerator chamber wall
5
LEPS spectrometer Analyzing magnet (0.7T) Vertex Detector (SSD) Charged particle tracking –MWDC (3 chambers) Particle Identification –TOF wall (40 slats)
6
Experimental Setup (Top view) TOF Dipole Magnet (0.7 T) MWDC Bremsstrahlung Photon Target ( Al 2 mm width, 1 mm thick ) + Scintillation fiber ( 1mm 2) EE Tagging Counter Spectrometer ( e + e - ) e-e- e+e+ Energy Resolution Tagging efficiency Background rate Plastic Scintillator
7
e + e - Momentum Reconstruction E(Tagging) GeV e + e - production point → localized in wire target x, z ~ 0.3mm One to one correspondence p e x e Monte Carlo Simulation p e ~ 8 MeV/mm @1GeV E ( e + e - ) GeV P e : e+/e- momentum x e : e+/e- x-position after magnet
8
Energy Resolution 2 = Meas 2 ー e+e- 2 Energy resolution of Tagging Resolution of momentum reconstruction Width of Experimental Data Monte Carlo 50 ‐ 50 ( MeV ) 0 E(Tagging) - E(e+e-) Counts 1.60<E <1.88 GeV Meas =23MeV Ave.15.3 MeV (MeV) E (GeV) Systematic error
9
Electron Track in Tagging counter Scattered Electron SSD Plastic Scintillator Plastic Scintillator Event Selection / Analysis 1. Pick up two clusters in up and down stream SSD. 2. Angle of track | e - e | < 4 3. Number of corresponding hit in the scintillator array (n) ee → Hit pattern ‘quality’ = 0 SSD+ Scintillator(n = 0) =1 SSD+ Scintillator(n = 1) =2 SSD+ Scintillator(n = 2)
10
Tagging Efficiency and Background rate Background rate Hit pattern(quality) SSD+ Scintillator(n = 2) SSD+ Scintillator(n ≧ 1) SSD+ Scintillator(n ≧ 0) 86.5± 0.6% Efficiency 90.6± 0.5% 91.0± 0.5% 2.3 ± 0.1% 2.6 ± 0.1% 2.8 ± 0.1% Efficiency = Number of tagger hit( ≧ 1 track) ÷ Number of e+e- pair in Tagging acceptance Background rate = Number of tagger hit( ≧ 2 tracks) ÷ Number of tagger hit( ≧ 1 track) Definitions Condition : Bremsstrahlung photon @ maximum electron current
11
Summary Performance of Tagging system 1. Experimental method e+e- momentum reconstruction using wire target. 2. Energy resolution Photon Tagging Resolution 15 MeV 3. Efficiency and background rate (Bremsstrahlung photon) Efficiency 90% [SSD+ Scintillator (n ≧ 1)] Background rate 3 %. 4. Further study is on going with Laser Electron Photon...
12
Photon Energy Spectrum 1st beam observation (1999.July) Photon energy (GeV) 1 2 3 Counts
13
Tagging counter PMT SSD Beam Plastic Scintillator
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.