Download presentation
Presentation is loading. Please wait.
Published byClarence Davidson Modified over 9 years ago
1
Ch 14. Group 14
2
2 Elemental forms
3
3 Diamond structured metals E g /eVR/ cm C5.5insulator10 15 Si1.1semicon50 Ge0.6semicon30 Snsmallmetallic10 −5
4
4 Discovery of fullerenes + From “Designing the Molecular World” by Phillip Ball, Princeton, 1994 www.chemistry.oregonstate.edu/courses/ch412/gobeavs/bucky.ppt
5
5 Icosahedral symmetry C 60 indicating reactive p- orbitals
6
6 Fullerenes C 60 soln C 70 soln FCC solid structure
7
7 C 60 reduction Cyclic voltammetry
8
8 Fullerene derivatives ( 2 C 70 fullerene)carbonylchlorobis(triphen ylphosphine)iridium Balch, Catalano, Lee, Olmstead, Parkin, JACS 113, 8953,1991. [Pt(PPh 3 ) 2 (C 60 )]
9
9 Carbon Nanotubes Multi-walled nanotube (MWNT) End-closed Sm 2 O 3 in nanotube
10
10 Bond enthalpies
11
11 Heavier congeners
12
12 Halides CF 4 not a LA SiF 4 GeF 4 SnF 4 PbF 4 ex SiF 4 + 2HF H 2 SiF 6 Note: PbF 4 is a strong oxidant due to inert pair effect All readily hydrolyze in air - except CF 4
13
13 PbF 4 and PbO PbO
14
14 Carbides CaC 2
15
15 Polyanion clusters Pb 5 2 using Wades’ rules for e counting # e pairs = ½ (5 (2) + 2) = 6 which is (n+1) or closo Sn 9 4 # e pairs = ½ (9 (2) + 4) = 11 which is (n+2) nido These are strong reducing agents, prepared in NH 3 (anhyd, liq) or H 2 NCH 2 CH 2 NH 2 (anhyd, liq) Zintl ions
16
16 Graphite structure C-C in-plane = 1.42 Å Usually (AB) n hexgonal stacking Interlayer distance = 3.354 Å Source: http://www.ccs.uky.edu/~ernst/ A B A Graphite is a semi-metal, chemically stable, light, strong
17
17 Graphite Intercalation C x → C x + + e − E ~ −1.3 V (so no C x + An − compounds in aqu solution) C x + BF 3 + ½ F 2 C x BF 4 C x + AlCl 3 + 1 / 2 Cl 2 C x AlCl 4 Domain structure
18
18 C x B(O 2 C 2 (CF 3 ) 4 ) 2 Some acceptor-type GIC’s Blue: obs Pink: calc C x SO 3 C 8 F 17
19
19 Graphite Lithiation Graphite lithiation:approx 0.2-0.3 V vs Li + /Li Theoretical capacity: Li metal> 1000 mAh/g C 6 Li 370 Actual C 6 Li formation: 320 – 340 mAh/g reversible; 20 – 40 irreversible Expands about 10% along z
20
20 Lithium ion batteries Cathode LiCoO 2 Li 1-x CoO 2 + xLi + + xe - Anode 6C + Li + + e - C 6 Li Electrolyte Organic solvent with LiPF 6
21
21 Orthosilicates Mg x Mn y Fe 2-x-y SiO 4 (peridot) Basic unit is SiO 4 (Td) Si 4+, O 2− hcp O array, Si in 1 / 8 Td sites and Mg,Fe,Mn in 1/2 Oh sites green color from Fe(II) Ortho = isolated SiO 4 4− ions
22
22 Single chain metasilicates NaAl(SiO 3 ) 2 Jadeite (SiO 3 2− ) n shared O has no charge apical O has 1− charge
23
23 Double chain metasilicates
24
24 Beryl structure Si 6 O 18 12− = (SiO 3 2− ) 6 ring Be 3 Al 2 Si 6 O 18 is beryl Be 3 Al 2−x Cr x Si 6 O 18 is emerald
25
25 Sheet silicates mica2:1 clay minerals
26
26 Clays
27
27 Clay minerals
28
28 3D frameworks SiO 2 -quartz varieties include amethyst, agate. Also tridymite, cristobalite All corner sharing T d MP ~1700 C Due to slow rearrangement to crystallize, these readily form amorphous glass (vitreous silica) Borosilicates – add Na 2 O, B 2 O 3 as network modifiers (Pyrex)
29
29 3D frameworks - aluminosilicates Zeolite A corner sharing Td with Al substitution for Si, which gives negative charge on framework Na x [(AlO 2 ) x (SiO 2 )] · δ H 2 O x < 1 (no Al-O-Al links) Sodalite cages = (Al 3 Si) 24 O 48
30
30 Zeolite frameworks Na 2 SiO 3 (hyd) + NaAlO 2 (hyd) → NaAlSiO 4 (hyd) N(OEt) 3
31
31 Siloxanes Si + 2CH 3 Cl (CH 3 ) 2 SiCl 2 Controlled hydrolysis to [(CH 3 )SiO] n + 2 HCl Si 3 O 3 (CH 3 ) 6 [(CH 3 ) 2 SiO] n polydimethylsiloxane (silicone) Some additives (CH 3 ) 3 SiCl chain termination CH 3 SiCl 3 crosslinker (CH 3 )(C 6 H 5 )SiCl 2 phenyl groups increase crystallinity and modulus
32
32 Siloxanes 8 CH 3 SiCl 3 + 12 H 2 O → cyclo-(CH 3 ) 8 Si 8 O 12 + 24 HCl Cubic arrangement
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.