Presentation is loading. Please wait.

Presentation is loading. Please wait.

Other Angle Relationships in Circles

Similar presentations


Presentation on theme: "Other Angle Relationships in Circles"β€” Presentation transcript:

1 Other Angle Relationships in Circles
Geometry Section 8 Day 3

2 Theorem 10.11 If a tangent and a chord intersect at a point on the circle, then the measure of angle formed is one half the measure of its intercepted arc. π‘šβˆ 1= 1 2 π‘š 𝐴𝐡 π‘šβˆ 2= 1 2 π‘š 𝐡𝐢𝐴 Geometry S8 Day 3

3 Theorem 10.12- Angles Inside the Circle Theorem
Geometry S8 Day 3 If two chords intersect inside a circle, the measure of each angle is one half the sum of the measures of the arcs intercepted by the angle and its vertical angle π‘šβˆ 1= 1 2 π‘š 𝐷𝐢 +π‘š 𝐴𝐡 π‘šβˆ 2= 1 2 (π‘š 𝐡𝐢 +π‘š 𝐴𝐷 )

4 Theorem 10.13- Angles Outside the Circle Theorem
If a tangent and a secant, two tangents, or two secants intersect outside a circle, then the measure of the angle formed is one half the difference of the measures of the intercepted arcs π‘šβˆ 1= 1 2 π‘š 𝐡𝐢 βˆ’π‘š 𝐴𝐢 π‘šβˆ 2= 1 2 π‘š 𝑃𝑄𝑅 βˆ’π‘š 𝑃𝑅 π‘šβˆ 3= 1 2 (π‘š π‘‹π‘Œ βˆ’π‘š π‘Šπ‘ ) Geometry S8 Day 3

5 Example 1: Solve for the ? 68Β°= 1 2 80Β°+π‘š π‘Šπ‘€ 68Β°=40Β°+ 1 2 π‘š π‘Šπ‘€
68Β°= Β°+π‘š π‘Šπ‘€ 68Β°=40Β°+ 1 2 π‘š π‘Šπ‘€ 68Β°βˆ’40Β°= 1 2 π‘š π‘Šπ‘€ 28Β°= 1 2 π‘š π‘Šπ‘€ 2βˆ™28Β°=π‘š π‘Šπ‘€ 56Β°=π‘š π‘Šπ‘€ ?=56Β° Geometry S8 Day 3

6 Example 2: Solve for x 40Β°= 1 2 124Β°βˆ’ 5π‘₯βˆ’6 2βˆ™40Β°=124Β°βˆ’ 5π‘₯βˆ’6
40Β°= Β°βˆ’ 5π‘₯βˆ’6 2βˆ™40Β°=124Β°βˆ’ 5π‘₯βˆ’6 80Β°=124Β°βˆ’5π‘₯+6 80Β°βˆ’124Β°βˆ’6=βˆ’5π‘₯ βˆ’50=βˆ’5π‘₯ βˆ’50 βˆ’5 = βˆ’5π‘₯ βˆ’5 π‘₯=10 Geometry S8 Day 3

7 Homework Geometry S8 Day 3 Assignment 8-3

8 Segment Lengths in Circles
Geometry Section 8 Day 3

9 Theorem 10.14- Segments of Chords Theorem
Geometry S8 Day 3 If two chords intersect in the interior of a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord πΈπ΄βˆ™πΈπ΅=πΈπΆβˆ™πΈπ·

10 Theorem 10.15 If two secant segments share the same endpoint outside a circle, then the product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment. EAβˆ™πΈπ΅=πΈπΆβˆ™πΈπ· Geometry S8 Day 3

11 Theorem 10.16- Segments of Secants and Tangents Theorem
If a secant segment and a tangent segment share an endpoint outside a circle, then the product of the lengths of the secant segment and its external segment equals the square of the length of the tangent segment. 𝐸 𝐴 2 =πΈπΆβˆ™πΈπ· Geometry S8 Day 3

12 Example 3: Solve for x 24βˆ™14=16βˆ™π‘₯ 336=16π‘₯ 336 16 = 16π‘₯ 16 π‘₯=21
Geometry S8 Day 3

13 Example 4: Find the indicated segment
20 2 =16βˆ™ 16+ 2π‘₯βˆ’3 400=16βˆ™ 16+2π‘₯βˆ’3 400=16βˆ™ 13+2π‘₯ 400=208+32π‘₯ 400βˆ’208=32π‘₯ 192=32π‘₯ = 32π‘₯ 32 π‘₯=6 𝐺𝐸= βˆ’ =16+12βˆ’3=πŸπŸ“ Geometry S8 Day 3

14 Homework Geometry S8 Day 3 Assignment 8-4


Download ppt "Other Angle Relationships in Circles"

Similar presentations


Ads by Google