Presentation is loading. Please wait.

Presentation is loading. Please wait.

Using Special Quadrilaterals

Similar presentations


Presentation on theme: "Using Special Quadrilaterals"β€” Presentation transcript:

1 Using Special Quadrilaterals
PROOFS Using Special Quadrilaterals

2 #1 If a quadrilateral is a parallelogram, then its opposite sides are congruent.
Given: PQRS is a parallelogram Prove: 𝑃𝑄≅𝑅𝑆, 𝑄𝑅≅𝑃𝑆 Statements Reasons 1. PQRS is a parallelogram. 1. Given 2. Through any 2 points there exists exactly 1 line. 2. Draw QS. 3. 𝑃𝑄βˆ₯𝑅𝑆, 𝑄𝑅βˆ₯𝑃𝑆 3. Definition of parallelogram. 4. βˆ π‘ƒπ‘„π‘†β‰…βˆ π‘…π‘†π‘„, βˆ π‘ƒπ‘†π‘„β‰…βˆ π‘…π‘„π‘† 4. Alternate Interior Angles Theorem. 5. 𝑄𝑆≅𝑄𝑆 5. Reflexive Property of Congruence. 6. βˆ†π‘ƒπ‘„π‘†β‰…βˆ†π‘…π‘†π‘„ 6. ASA Congruence Postulate. 7. 𝑃𝑄≅𝑅𝑆, 𝑄𝑅≅𝑃𝑆 7. Corresponding Parts of Congruent Triangles are Congruent (CPCTC).

3 #2 If both pairs of opposite sides in a quadrilateral are congruent, then it is a parallelogram.
Given: 𝑃𝑄≅𝑅𝑆, 𝑄𝑅≅𝑃𝑆 Prove: PQRS is a parallelogram Statements Reasons 1. 𝑃𝑄≅𝑅𝑆, 𝑄𝑅≅𝑃𝑆 1. Given 2. Through any 2 points there exists exactly 1 line. 2. Draw QS. 3. Reflexive Property of Congruence. 3. 𝑄𝑆≅𝑄𝑆 4. SSS Congruence Postulate. 4. βˆ†π‘ƒπ‘„π‘†β‰…βˆ†π‘…π‘†π‘„ 5. βˆ π‘ƒπ‘„π‘†β‰…βˆ π‘…π‘†π‘„, βˆ π‘ƒπ‘†π‘„β‰…βˆ π‘…π‘„π‘† 5. Corresponding Parts of Congruent Triangles are Congruent (CPCTC). 6. 𝑃𝑄βˆ₯𝑅𝑆, 𝑄𝑅βˆ₯𝑃𝑆 6. Alternate Interior Angles Theorem. 7. PQRS is a parallelogram. 7. Definition of parallelogram.

4 #3 If both pairs of opposite angles in a quadrilateral are congruent, then it’s a parallelogram.
Given: PQRS is a quadrilateral in which βˆ π‘ƒβ‰…βˆ π‘…, βˆ π‘„β‰…βˆ π‘† Prove: 𝑃𝑄𝑅𝑆 𝑖𝑠 π‘Ž π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š Statements Reasons PQRS is a quadrilateral in which βˆ π‘ƒβ‰…βˆ π‘…, βˆ π‘„β‰…βˆ π‘† 1. Given 2. The interior angle sum of a quadrilateral is 360. 2. 2x + 2y = 360 3. Multiplication property of equality. 3. π‘₯+𝑦=180 4. βˆ π‘ƒ,βˆ π‘„ π‘Žπ‘›π‘‘ βˆ π‘„,βˆ π‘… π‘Žπ‘Ÿπ‘’ π‘ π‘’π‘π‘π‘™π‘’π‘šπ‘’π‘›π‘‘π‘Žπ‘Ÿπ‘¦ 4. Definition of supplementary angles 5. Consecutive Interior Angles Converse. 5. P𝑄βˆ₯𝑅𝑆, 𝑄𝑅 βˆ₯𝑃𝑆 6. 𝑃𝑄𝑅𝑆 𝑖𝑠 π‘Ž π‘π‘Žπ‘Ÿπ‘Žπ‘™π‘™π‘’π‘™π‘œπ‘”π‘Ÿπ‘Žπ‘š 6. Definition of Parallelogram

5 #4 If a quadrilateral is a parallelogram, then its diagonals bisect each other.
Given: PQRS is a parallelogram Prove: 𝑀 bisects 𝑄𝑆 and 𝑃𝑅 Statements Reasons 1. Given 2. If a quadrilateral is a parallelogram, then its opposite sides are congruent. 3. Alternate Interior Angles Congruence Theorem 4. ASA 5. Corr. parts of β‰… triangles are β‰…. 6. Definitions of segment bisector.

6 Statements Justifications Given
#5 Converse of Diagonals Bisect Each Other Thm If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. Statements Justifications Given Def. of Segment Bisector Def. of Vertical Angles SAS CPCTC

7 #2 If a quadrilateral is a parallelogram, then its opposite angles are congruent.
Given: PQRS is a parallelogram Prove: βˆ π‘ƒβ‰…βˆ π‘…, βˆ π‘„β‰…βˆ π‘† Statements Reasons 1. PQRS is a parallelogram. 1. Given 2. Through any 2 points there exists exactly 1 line. 2. Draw QS. 3. 𝑃𝑄βˆ₯𝑅𝑆, 𝑄𝑅βˆ₯𝑃𝑆 3. Reflexive Property of Congruence. 4. βˆ π‘ƒπ‘„π‘†β‰…βˆ π‘…π‘†π‘„, βˆ π‘ƒπ‘†π‘„β‰…βˆ π‘…π‘„π‘† 4. SSS 5. 𝑄𝑆≅𝑄𝑆 5. Corresponding Parts of Congruent Triangles are Congruent (CPCTC). . 6. βˆ†π‘ƒπ‘„π‘†β‰…βˆ†π‘…π‘†π‘„ 6. Alternate Interior Angles Converse. 7.βˆ π‘ƒβ‰…βˆ π‘…, βˆ π‘„β‰…βˆ π‘† 7. Definition of Parallelogram


Download ppt "Using Special Quadrilaterals"

Similar presentations


Ads by Google