Download presentation
Presentation is loading. Please wait.
Published byOwen Harris Modified over 8 years ago
1
A fast online and trigger-less signal reconstruction Arno Gadola Physik-Institut Universität Zürich Doktorandenseminar 2009
2
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 2 Outline Introduction into γ -ray astronomy Characteristics and detection of γ -ray induced Cherenkov pulses Reconstruction of detected Cherenkov pulses Results of reconstruction algorithm Summary and Outlook
3
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 3 γ -rays SNR Dark Matter GRBs AGNs Pulsars PWN Micro quasars x-ray binaries Energy range:10 3 – 10 20 eV HE and VHE: 10 7 – 10 12 eV Wavelength: 10 -13 – 10 -18 m Visible light: 3.2 – 1.6 eV 380 – 750 nm Production mechanisms: inverse Compton, π 0 → γγ, decay of heavy particles, etc. Low rates: 1 γ /min (Vela pulsar) Not affected by magnetic fields Probing non-thermal universe
4
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 4 Cherenkov light production X 0 = typically 330m in atmosphere Bremsstrahlung v e >c/n=c n E0E0 ½E 0 ¼E 0 θ≈1˚ 45‘000m 2 illuminated on sea level, but θ(n)! e
5
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 5 Cherenkov light production Some values for relativistic electrons: Characteristics of Cherenkov pulses: Duration: ≈ 5ns Time spread: 0 – 10ns Intensity: 4.6 – 74 γ /m 2 for E γ = 0.1 – 1TeV (A. M. Hillas, 2002) i.e. for a 12m telescope = 110m 2 mirror = 500 – 8’140 γ Wavelength: 300 – 600 nm WaterAtmosphere @ sea level n1.331.00029 θ max 40°1.3° E Tresh 260 keV21’000 keV X0X0 430 m330 m # γ /m250030 # γ /X 0 1’075’00010’000
6
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 6 Cherenkov telescope MAGIC I, La Palma Mirror ø 17m Noise:□ stars □ airplanes □ cities Signal:□ γ -rays □ protons □ muons H.E.S.S., Namibia MAGIC I camera ø 1.5m, 450kg
7
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 7 Camera readout chain
8
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 8 Cross-Correlation m mngmfngf][][])[*( * dtgftgf)()())(*( * For two continuous functions: For two discrete functions: The second derivative: Better resolution of pile-up
9
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 9 Simulation ≈ TemplateSimulated measurement f NSB = 3000 MHz (full moon) m mngmfngf][][])[*( *
10
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 10 Reconstruction Output at threshold of 2 γ Signal:4.6 γ @ t=250ns Input sample Signal: A=5 γ @ t=250ns NSB:60MHz (After ADC): Second derivative of the discrete cross-correlation Reconstruction of sample with time and amplitude stamps
11
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 11 Time resolution:(0.0 ± 0.4)ns for 12bits, 1000MHz ADC (-0.5 ± 1.5)ns for 10bits, 250MHz ADC Amplitude resolution: (0.7 ± 1.5) γ for 12bits, 1000MHz ADC (1.5 ± 2.0) γ for 10bits, 250MHz ADC Reconstruction efficiency increases with: higher ADC resolution or higher ADC sampling rate higher Cherenkov signal amplitude higher NSB frequency Noise rate for 3000 MHz NSB and sampling rate f s = 1 GHz: 8 bits → noise rate = 360 MHz 10 bits → noise rate = 240 MHz 12 bits → noise rate = 125 MHz Results Simulation parameters: ADC resolutions:8 – 12bit ADC sampling rates:250 – 1000 MHz NSB:40 – 3000MHz Cherenkov signal amplitudes:1 – 100 γ This ratio of 3:2:1 shows up for all sampling rates f s
12
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 12 Summary & Outlook Good reconstruction efficiency for an ADC setup with 300 MHz and 9 - 10 bit sampling: 5 γ pulse @ noise rate < 100 kHz for low NSB (100 MHz) 5 γ pulse @ noise rate < 5 MHz for large NSB (3000 MHz) Further investigations on reconstruction algorithm behavior (time jitter, real data) Investigation of a hardware based implementation of the reconstruction algorithm Designing a toy camera readout chain for testing the signal reconstruction algorithm Research on “new” light collector design together with ETHZ
13
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 13 Questions ?
14
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 14 Backup Slides Shower development Propertier of Cherenkov light Propertier of the atmosphere Photon interactions Simulation examples Time resolution Amplitude resolution
15
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 15 γ -ray sources Supernova remnants (SNRs) A supernova is the explosion of a massive star (mass of 8 to 150 solar masses) at the end of its life. Cosmic-rays are accelerated in the supernova explosion shocks which are non thermal processes. The gamma-ray energies reach well beyond 1013 eV. Pulsars and associated nebulae Pulsars are rotating neutron stars with an intense magnetic field. The pulsar’s magnetosphere is known to act as an efficient cosmic accelerator with gamma-ray emission in the range of 10 to 100 GeV. Pulsar wind nebulae are synchrotron nebulae powered by the relativistic winds of energetic pulsars. Their VHE gamma-ray emissions originate most probably from electrons accelerated in the shock formed by the interaction of the pulsar wind with the supernova ejecta. The most famous pulsar wind nebula is the Crab Nebula which, due to its strong and steady emission of gamma-rays, is used as calibration candle for almost all VHE gamma-ray detectors. Binary systems A binary system contains a compact object like a neutron star or a black hole orbiting a massive star. Such objects emit mostly VHE gamma-rays. Active galactic nuclei (AGNs) An AGN is a galaxy with a super massive black hole at the core. AGNs are known to produce outflows which are strong sources of high energy gamma-rays. Other possible sources of gamma-rays are synchrotron emission from populations of ultra-relativistic electrons and inverse Compton emission from soft photon scattering. Gamma ray bursts (GRBs) GRBs are still a not completely resolved phenomenon. Their pulses are extremely intensive and have a duration of about 0.1 seconds to several minutes. They are known as the most luminous electromagnetic events occurring in the universe since the Big Bang and they all originate from outside our galaxy (as known so far). Investigation of gamma-rays coming from GRBs would help to establish a reliable model for GRBs. Dark matter Dark matter particles accumulate in, and cause, wells in gravitational potential, and with high enough density they are predicted to have annihilation rates resulting in detectable fluxes of high energy gamma-rays.
16
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 16 Shower development Astroparticle Physics, Claus Grupen
17
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 17 Shower development Very High Energy Gamma-ray Astronomy, T.C. Weekes
18
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 18 Properties of Cherenkov light Astroparticle Physics, Claus Grupen
19
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 19 Properties of the atmosphere Astroparticle Physics, Claus Grupen
20
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 20 Photon interactions Astroparticle Physics, Claus Grupen Dominations of photon interactions Observation of UHE gamma-rays only possible for near sources due to attenuation through γ + γ e + + e - (e.g. cosmic background γ’s)
21
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 21 Simulation examples ≈ NSB of frequency f NSB superposed by two 5 γ showers f NSB = 40 MHz (newmoon) f NSB = 3000 MHz (full moon)
22
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 22 Time resolution
23
05.06.09, Arno Gadola Doktorandenseminar Physik-Institut Universität Zürich Winterthurerstr. 190, 8057 Zürich 23 Amplitude resolution
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.