Download presentation
Presentation is loading. Please wait.
Published byBeryl Watts Modified over 9 years ago
1
1 ITEP Winter School 2012, Feb 18 2012 Roman Mizuk ITEP, Moscow Quarkonium, experiment BELLE Collaboration
2
2 Contents B-factories observed CP violation in B decays Confirmed Kobayashi-Maskawa mechanism Nobel prize 2008 Unexpected bonus : Other highlights: many rare B decays D 0 mixing new exotic quarkonium(-like) states this lecture – experiment Mikhail Voloshyn – theory
3
9 th anniversary! X(3872) Belle citation count B→X s γ 548 630 365 CP Phys.Rev.Lett.91 262001, (2003)
4
Outline Conventional quarkonium X(3872) 1 – – family Charged states with bb pairs _
5
Heavy quarkonium Approximately non-relativistic System Ground triplet state (v/c) 2 NameMass, MeV , MeV uu,dd 800150~1.0 ss 10004~0.8 cc 31000.09~0.25 bb 95000.05~0.08 _ _ _ _ _ Approximately non-relativistic Rich array of bound states “hydrogen atom” of QCD
6
6 Charmonium Levels P = (–1) L+1 C = (–1) L+S S = s 1 + s 2 = {0, 1} J = S + L n – radial quantum number J PC L=0 S=0 c (1S), c (2S) 0 – + J/ , (2S), (4040), (4415) 1 – – L=1 S=0 h c (1P) 1 + – L=1 S=1 0 + + 1 + + 2 + + 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 cc J/ hchc c (2S) (2S) L=2 S=1 (3770), (4160) 1 – – (3770) (4160) (4415) (4040) 0 – + 1 – – 1 + – (0,1,2) ++ c2 c1 c0 c2 (2P) J PC M, GeV L=0 S=1 c0 (1P) c1 (1P) c2 (1P), c2 (2P) (3770) = 1 3 D 1 + 0.2 2 3 S 1 2M(D) n 2S+1 L J
7
7 Bottomonium levels notation : subscript “c” ”b”
8
8 Observation of J/ p + Be → e + e - + X BNL AGSSLAC SPEARextracted 28 GeV p-beam M( e + e - ) e + e - annihilation Be target Ting et al. Richter et al. Width of t J PC =1 – – E c.m.s. , nb Mark I first 4 detector
9
9 Observation of J/ Nov 1974 – revolution J/ is heavy and very narrow smth new Observation of 4 th quark Quarks were widely recognized as particles Beginning of modern physics
10
10 Why J/ is so narrow? MeV 0.093 ± 0.0020.327 ± 0.01127 ± 411 ± 127 ± 185 ± 12 J 2S cc c0 (3770) (4040) c c ‾ c ‾ c g g c c ‾ e, ,q ¯ C-parity ~s~s 2/3 1/3 DD at threshold DD* D*D* For J/ strong decays are suppressed so much that EM decays are competitive. 3
11
11 1 – – Observation of family R = (e + e - hadrons) / 0 (e + e - + - ) 0 = 4 2 / 3s J PC of photon produced in e + e - collisions
12
12 Observation of cJ and c 1 – – 0 – + (0,1,2) + + (2S) cJ cJ J/ (2S) c E1 M1
13
13 – DASP, DESY (1976) – Crystall Ball, SLAC (1980) Observation of Crystal Ball: sphere with 900 NaI crystals cJ c
14
14 Charmonium before B-factories 1980 – 2002 : no new charmonium states
15
15 Bottomonium before B-factories (1S), (2S) – 1977 FNAL pA collisions e+e- colliders: DORIS, DORIS-II (DESY) CESR (Cornell) VEPP-4 (Novosibirsk) 1985 – 2008 : no new bottomonium states Lederman 1 – – (0,1,2) + +
16
16 B-factories @ KEK @ SLAC Data taking : 2000 – 2010 e + e – → (4S) E cms ~ 10.6 GeV
17
17 Charmonium production at B factories in B decays initial state radiation J PC = 1 – – double charmonium production γγ fusion J PC = 0 ± +, 2 ± + Only J PC = 0 ± + observed so far. Any quantum numbers can be produced, to be determined from angular analysis. c (2S) c2 (2P)
18
18 Observation of h c (1P) 1 – – (2S) h c (1P) 0 1 + – CLEOc 2005 (c-Factory) 00
19
19 QCD potential one-gluon exchange, asymptotic freedom confining potential, “chromoelectric tube” There are other parameterizations, shapes are similar for 0.1 < R < 1 fm. Schrödinger equation cc J/ c2 (2S)
20
20 State Experim Predictions of Potential Models
21
21 Predictions of Potential Models J PC M, GeV Potential models reproduce also annihilation widths J/, (2S) → ℓ + ℓ - c cJ → and radiative transitions btw. charmonia.
22
22 X(3872)
23
23 PRL91,262001 (2003) X(3872) was observed by Belle in B + → K + X(3872) 2S → J/ψ π + π - Recent signals of X(3872) → J/ψ π + π - X(3872) Confirmed by CDF, D0 and BaBar (+LHCb) pp collisions PRL93,162002(2004) arXiv:0809.1224 PRD 77,111101 (2008) PRL103,152001(2009) direct production only 16% from B
24
24 Puzzles of X(3872) M = 3871.63 0.19 MeV, Γ < 1.2 MeV (90% C.L.) Bf(X J/ ) / Bf(X J/ ) = 0.21 0.06 M( + - ) + - pair is produced via 0 X(3872) is observed in isospin-violating mode Mass above DD threshold, but very narrow 2003 revolution Bf(X J/ ) / Bf(X J/ ) = 0.8 0.3 confirm even C-parity Mass close to D* 0 D 0 threshold: m = – 0.09 0.34 MeV expect for cc ~20 _ Very unlikely that X(3872) is charmonium _ X(3872) → J/ψ π + π -
25
25 Exotic interpretations tetraquarkmolecule compact diquark- diantiquark state two loosely bound D mesons Tetraquark Maiani, Polosa, Riquer, Piccini; Ebert, Faustov, Galkin; … 1.Charged partners of X(3872). 2.Two neutral states ∆M = 8 3 MeV, one populate B + decay, the other B 0. Predictions: BaBar, Belle : J/ + 0 channel no charged partner CDF : signal shape in J/ + - channel Belle : production in B + and B 0 decays no 2 nd neutral resonances Experiment: Tetraquarks are not supported by any experimental evidence.
26
26 Molecule a few fm Mass close to D* 0 D 0 threshold: m = – 0.09 0.34 MeV Swanson, Close, Page; Voloshin; Kalashnikova, Nefediev; Braaten; Simonov, Danilkin... Weakly bound S-wave D* 0 D 0 system _ Large isospin violation 8 MeV difference btw D* + D - and D* 0 D 0 thresholds. Large production rate in pp and in B decays admixture of c1 (2P). _ J P = 1 + Bound state J/ + - D0D00D0D00 D* 0 D 0 Virtual state J/ + - D0D00D0D00 Predicts different line shapes for J/ + - and D* 0 D 0 modes: _
27
27 B + & B 0 D 0 D *0 K 4.9σ 347fb -1 PRD77,011102(2008) B K D 0 D *0 605 fb -1 D*→DγD*→Dγ D*→D0π0D*→D0π0 Flatte vs BW similar result: 8.8σ arXiv:0810.0358 X(3872) → D* 0 D 0 ~2 Shifted mass and higher width are in accord with molecular model Bf(X DD*) / Bf(X J/ ) = 9.5 3.1
28
28 Molecule (2) Kalashnikova, Nefediev arXiv:0907.4901 Simultaneous analysis of J/ and DD* data Bound or virtual? c1 (2P) admixture? ~2 experimental difference reverses conclusion Present statistics are insufficient to constrain theory State c1 (2P) admixture Belle databound~ 30% BaBar datavirtual~ 0 Braaten, Stapleton Zhang, Meng, Zheng arXiv: 0907.3167 0901.1553
29
29 Angular analysis CDF, BELLE all J PC except 1 ++ and 2 -+ are excluded cos X cos cos l cos cos X cos cos l cos MC J PC =1 ++ MC J PC = 2 -+
30
30 Nature of binding force One pion exchange ? Coupled channel resonance ? D D D* c1
31
31 “Loose ends” Angular analysis to discriminate J PC =1 ++ and 2 – + Improve line-shape measurement for D* 0 D 0 Super B-factories More decay channels : 0 0 , + - c LHCb BELLE ?, LHCb, Super B-factories _
32
32 1 – – family
33
33 Use ISR to measure open&hidden charm exclusive final states ISR at B factories Quantum numbers of final states are fixed J PC = 1 – – Continuous ISR spectrum: access to the whole √s interval α em suppression compensated by huge luminosity comparable sensitivity to energy scan (CLEO-c, BES) e–e–e–e– e+e+e+e+ e+e+e+e+ e–e–e–e– c γ s =(E cm – E γ ) 2 – p 2 c e–e–e–e– e+e+e+e+
34
34 e + e – → ISR J/ ( ) + - : Y(4008,4260,4360,4660) Above DD threshold, decay to open charm? – PRL99, 182004 550/fb PRL99, 142002 670/fb arXiv: 0808.1543 454/fb PRL98, 212001 298/fb
35
35 No evidence for Y’s → hadrons y (3770) Durham Data Base Y( 4008) y (4040) y (4160) Y( 4260) Y( 4325) y (4415) Y (4660) ψ (3770) Y( 4008) ψ (4040) ψ(4160) Y( 4260) Y( 4360) ψ (4415) Y (4660) R(s) = – R uds (e + e – →hadrons) (e + e – →μ + μ – ) ee is small. Since ee B(Y ) is finite (is measured) B(Y ) is big X.H. Mo et al, PL B640, 182 (2006) ( → J/ + - ) = 0.104 ± 0.004 MeV ( → J/ + - ) = 0.044 ± 0.008 MeV Much larger than measured charmonium widths: (Y(4260) → J/ + - ) > 0.508 MeV @ 90% CL
36
36 Interpretation – PRD80, 091101R (2010) hybrid → D** D 1 – → (D*π) D DD* Y(4260) ψ(4415) hybrid state with excited qluonic degree of freedom c c – π π hadrocharmonium charmonium embedded into light hadron predictions?
37
37 DDDD * D*D*D*D* DDπ DD * π Λ + c Λ – c D ( * )+ s D ( * )– s Inclusive cross-section is saturated by exclusive contributions
38
38 Charged resonances with bb _ (5S) Z b (10610) + - Z b (10650) + - (1S) + - (2S) + - (3S) + - h b (1P) + - h b (2P) + - arXiv:1103.3419arXiv:1110.2251
39
39 Integrated Luminosity at B-factories > 1 ab -1 On resonance: (5S): 121 fb -1 (4S): 711 fb -1 (3S): 3 fb -1 (2S): 24 fb -1 (1S): 6 fb -1 Off reson./scan : ~100 fb-1 530 fb -1 On resonance: (4S): 433 fb -1 (3S): 30 fb -1 (2S): 14 fb -1 Off reson./scan : ~54 fb-1 (fb -1 ) asymmetric e+e- collisions
40
40 ( 5S ) Belle took data at E=10867 1 MэВ 2M(B s ) BaBar PRL 102, 012001 (2009) ( 6S ) ( 4S ) e + e - hadronic cross-section study ( 1S ) ( 2S ) ( 3S ) ( 4S ) 2M(B) e + e - -> (4S) -> BB, where B is B + or B 0 e + e - -> bb ( (5S)) -> B ( * ) B ( * ), B ( * ) B ( * ) , BB , B s ( * ) B s ( * ), (1S) , X … _ _____
41
41 Puzzles of (5S) decays 41 PRL100,112001(2008) (MeV) 10 2 PRD82,091106R(2010) Anomalous production of (nS) + - Similar effect in charmonium? shapes of R b and ( ) different (2 ) to distinguish energy scan (5S) line shape of Y b Y(4260) with anomalous (J/ + - ) assume Y b close to (5S)
42
42 h b (1P) & h b (2P) Observation of
43
43 Trigger Y(4260) Y b search for h b (nP) + - @ (5S) CLEO observed e + e - → h c + – @ E CM =4170MeV PRL107, 041803 (2011) (h c + – ) (J/ + – ) 4260 Hint of rise in (h c + - ) @ Y(4260) ? Y(4260)
44
44 MM( + - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 + M HF test of hyperfine interaction For h c M HF = 0.00 0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass (M b0 + 3 M b1 + 5 M b2 ) / 9 (3S) → 0 h b (1P) BaBar 3.0 arXiv:1102.4565 PRD 84, 091101 Previous search
45
45 MM( + - ) Introduction to h b (nP) (bb) : S=0 L=1 J PC =1 + M HF test of hyperfine interaction For h c M HF = 0.00 0.15 MeV, expect smaller deviation for h b (nP) _ Expected mass (M b0 + 3 M b1 + 5 M b2 ) / 9 (3S) → 0 h b (1P) BaBar 3.0 arXiv:1102.4565 PRD 84, 091101 Previous search
46
46 (5S) h b + - reconstruction h b → ggg, b (→ gg) no good exclusive final states reconstructed “Missing mass” M(h b ) = (E c.m. – E + - ) 2 – p + - ** 2 M miss ( + - ) (1S) (2S) (3S) h b (2P)h b (1P)
47
47 Results 121.4 fb -1 h b (1P) 5.5 h b (2P) 11.2 Significance w/ systematics
48
48 Hyperfine splitting h b (1P) (1.7 1.5) MeV/c 2 h b (2P) (0.5 +1.6 ) MeV/c 2 -1.2 Deviations from CoG (Center of Gravity) of bJ masses consistent with zero, as expected Ratio of production rates Mechanism of (5S) h b (nP) + - decay violates Heavy Quark Spin Symmetry for h b (1P) for h b (2P) no spin-flip = spin-flip Process with spin-flip of heavy quark is not suppressed
49
49 Resonant structure of (5S) h b (nP) + -
50
50 Resonant structure of (5S) h b (1P) + - M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2
51
51 Resonant structure of (5S) h b (1P) + - Results MeV 2 = non-res.~0 Fit function ~BB* threshold _ ~B*B* threshold __ 1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a = = degrees Significance (16 w/ syst)18 121.4 fb -1 M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2 fit M miss ( + – ) in M(h b ) bins M(h b ), GeV/c 2 h b (1P) yield / 10MeV Z b (10610), Z b (10650)
52
52 Resonant structure of (5S) h b (2P) + - Significances (5.6 w/ syst)6.7 M(h b – ), GeV/c 2 phase-space MC M(h b + ), GeV/c 2 fit M miss ( + – ) in M(h b ) bins 121.4 fb -1 M(h b ), GeV/c 2 h b (1P) yield / 10MeV non-res.~0 h b (1P) + - h b (2P) + - non-res. set to zero degrees MeV/c 2 MeV c o n s i s t e n t MeV 2 = 1 = MeV MeV/c 2 M 2 = M 1 =MeV/c 2 a = = degrees MeV
53
53 Resonant structure of (5S) (nS) + - (n=1,2,3)
54
54 (5S) (nS) + - +- +- (n = 1,2,3) (1S) (2S) (3S) reflections M miss ( + - ), GeV/c 2
55
55 (1S) (2S) (3S) (5S) (nS) + - (n = 1,2,3) M miss ( + - ), GeV/c 2 purity 92 – 94% +- +-
56
56 (5S) (nS) + - Dalitz plots (1S) (2S) (3S)
57
57 (5S) (nS) + - Dalitz plots (1S) (2S) (3S) Signals of Z b (10610) and Z b (10650)
58
58 Results of Dalitz plots analyses (1S) (2S) (3S)
59
59 Results of Dalitz plots analyses (2S) (3S) (1S)
60
60 M 1 = 10607.2 2.0 MeV 1 = 18.4 2.4 MeV M 2 = 10652.2 1.5 MeV 2 = 11.5 2.2 MeV Summary of Z b parameters Average over 5 channels Angular analysis J P = 1 + for both Z b
61
61 M 1 = 10607.2 2.0 MeV 1 = 18.4 2.4 MeV M 2 = 10652.2 1.5 MeV 2 = 11.5 2.2 MeV Z b (10610) yield ~ Z b (10650) yield in every channel Relative phases: 0 o for and 180 o for h b Summary of Z b parameters Average over 5 channels M(h b ), GeV/c 2 h b (1P) yield / 10MeV = 180 o = 0 o
62
62 Heavy quark structure in Z b Wave func. at large distance – B(*)B* Why h b is unsuppressed relative to Relative phase ~0 for and ~180 0 for h b Production rates of Z b (10610) and Z b (10650) are similar Widths –”– Existence of other similar states Explains Predicts Other Possible Explanations Coupled channel resonances (I.V.Danilkin et al, arXiv:1106.1552) Cusp (D.Bugg Europhys.Lett.96 (2011),arXiv:1105.5492) Tetraquark (M.Karliner, H.Lipkin, arXiv:0802.0649) Bondar et al. PRD84 054010 (arXiv:1105.4473)
63
63 States that do not fit qq table QWG, arXiv:1010.5827 _
64
64 QWG, arXiv:1010.5827 Z(4430) + widths 100–200 MeV difficult to interpret multiquark candidates BZKBZK rescattering? Pakhlov PLB702,139(2011) States that do not fit qq table
65
65 Conclusions Quark Model provides good description of quarkonium below open flavor threshold observations at B-factories Above threshold new regime : light quarks become important molecules, hadrocharmonium (... ?) BELLE established new type of elementary particles We knew that neucleons can form bound states (deutron, nuclei) Now we know that D and B mesons can form bound states “Meson chemistry”
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.