Presentation is loading. Please wait.

Presentation is loading. Please wait.

Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R.

Similar presentations


Presentation on theme: "Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R."— Presentation transcript:

1 Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R

2 Hartmut Abele, University of Heidelberg 2 4.1 Phase and Time Reversal Violation sin  ||

3 Hartmut Abele, University of Heidelberg 3 D-Koefficient, SM: D = 0, LR ≠ 0

4 Hartmut Abele, University of Heidelberg 4 Principle Set-Up Measurement of D Breaking of detector symmetry  Systematic effects D = 0 in SM P violation  Asymmetry with spin-flip Diagram from T. Soldner

5 Hartmut Abele, University of Heidelberg 5 Coefficient D D = (–2.8  6.4 stat  3.0 syst )·10 -4 T. Soldner et al, Phys. Let. B 581 (2004) 49. L.J. Lising et al, PRC 62 (2000) 055501. D = (–6  12 stat  5 syst )·10 -4

6 Hartmut Abele, University of Heidelberg 6 5. The Future

7 Hartmut Abele, University of Heidelberg 7 Technical developments: 5.1 New sources SNS, Oak Ridge, Tennessee:

8 Hartmut Abele, University of Heidelberg 8 Particle Physics: SM Tests ILL: new supermirror guide

9 Hartmut Abele, University of Heidelberg 9 FRM2 2005 UCN Sources Cold neutrons at the FRM II UCN source at the FRM II UCN source PSI UCN source at Vienna UCN Source at Mainz UCN Source LANL UCN Source NC State

10 Hartmut Abele, University of Heidelberg 10 ProjectsitemethodProduction Rate/cc (SD 2 ) Converter volume Useful Density PF4ILL60 MW Reactor, LD 2 (CW) Not comparable n ≤ 40 ( n ≤ 20 now ?) UCNA prototype LANLSpallation target, SD 2 500 UCN/cc/μA (up to 10 μA) 300 ccn ≤ 150 UCNA productio n LANLSpallation target, SD 2 90 UCN/cc/μA (up to 10 μA) 200 UCN/cc/μA 2000 ccn ≤ 0.15/ μA n < 4/μA PULSTA R NCSU1–2 MW Reactor, SD 2 (CW) 1.2×10 4 UCN/cc/MW 1000 ccn ≤ (50 – 200) Mainz/FR MII Technical University Mainz Pulsed Reactor, SD 2 ~33 UCN/cc/MJ (up to 6 MJ/600 s) or ~2 UCN/cc/s 200–300 ccn ≤ 3/pulse n ≤ 350/pulse ? OsakaOsaka University Spallation target, LHe 3.5 UCN/cc/μA12000 ccn ≤ 1.4 n < 280 SUNSPSISpallation target1.5×10 4 /cc/μA (8 mC in 4s/500s)) 30000 ccn < 2500 Future UCN Sources from A. Young / P. Huffman

11 Hartmut Abele, University of Heidelberg 11 Facilities Nico, Snow, Annu Rev Nucl Part Sci 55 (2005) 55

12 Hartmut Abele, University of Heidelberg 12 Facilities Nico, Snow, Annu Rev Nucl Part Sci 55 (2005) 55

13 Hartmut Abele, University of Heidelberg 13 Characteristics of experiments using magnetic fields

14 Hartmut Abele, University of Heidelberg 14 a Spect, Univ. MZ/TUM Proton spectroscopy

15 Hartmut Abele, University of Heidelberg 15 aSPECT is a retardation spectrometer for protons of free neutron decay aSPECT First impression

16 Hartmut Abele, University of Heidelberg 16 Measurements at different U A values Spectra for different values of U A, each background (U A = 800 V) subtracted

17 Hartmut Abele, University of Heidelberg 17 Integral spectrum obtained from ~ 1 h data taking

18 Hartmut Abele, University of Heidelberg 18 aCORN Surface barrier detector

19 Hartmut Abele, University of Heidelberg 19 Principle: momentum space diagram Typical momentum vector for pe Solenoid and aperture arrangement will allow protons with momentum < eBr/2 p  lie in a second cylinder, kinematically distinct groups a will cause an asymmetry between coincidence events between I and II. Groups I and II can be experimentally distinguished by TOF.

20 Hartmut Abele, University of Heidelberg 20 Neutron beta-decay program of PNPI

21 Hartmut Abele, University of Heidelberg 21

22 Hartmut Abele, University of Heidelberg 22

23 Hartmut Abele, University of Heidelberg 23 N ab Electron and neutrino momenta from electron energy cos  e  from proton momentum and electron energy using 4T  1T TOF between electron and proton

24 Hartmut Abele, University of Heidelberg 24 California Institute of Technology R. Carr, B. Filippone, J. Hsiao, R. McKeown, B. Plaster, B. Tipton, J. Yuan Institute Lau-Langevin P. Geltenbort Idaho State University R. Rios, E. Tatar Los Alamos National Laboratory J. Anaya, T. J. Bowles (co-spokesperson), T. Brun, M. Fowler, R. Hill, G. Hogan, T. Ito, K. Kirch, S. Lamoreaux, M. Makela, C. L. Morris, A. Pichlmaier, A. Saunders, S. Seestrom, P. Walstrom North Carolina State University/TUNL H. O. Back, L. Broussard, A. T. Holley, R. K. Jain, R. W. Pattie, K. Sabourov, A. R. Young (co- spokesperson), Y.-P. Xu Petersburg Nuclear Physics Institute A. Aldushenkov, A. Kharitonov, I. Krasnoshekova, M. Lasakov, A. P. Serebrov, A. Vasiliev Tohoku University S. Kitagaki University of Kyoto M. Hino, T. Kawai, M. Utsuro University of Washington A. Garcia, S. Hoedl, D. Melconian, A. Sallaska, S. Sjue University of Winnipeg J. Martin Virginia Polytechnic Institute and State University R. Mammei, M. Pitt, R. B. Vogelaar UCNA Collaboration

25 Hartmut Abele, University of Heidelberg 25 UCN residency time in bottle < 5s to limit depolarization…

26 Hartmut Abele, University of Heidelberg 26 Systematic EffectSize of correctionUncertainty UCN Pol/spin-flip eff. 1  10 -3 1  10 -4 Wall depolarization 9  10 -4 1  10 -4 Backscattering 2  10 -3 4  10 -4 Field non-uniformity 7  10 -4 7  10 -5 Detector response 3  10 -4 Detector linearity 6  10 -5 Total background.5 Hz.1 Hz Total 2.5  10 -3 1.0  10 -3 Dominant systematic corrections Systematic Uncertainty Budget Original Goal: measure A to precision of 0.2% or better for a decay rate of 116 Hz in our bottle requires 45 days of beam time + 45 days to explore systematics from A. Young

27 Hartmut Abele, University of Heidelberg 27 It’s built! 2,3 m

28 Hartmut Abele, University of Heidelberg 28 The Proton Asymmetry in Neutron Decay Experiment “PANDA” Alexander Komives - dePauw Tim Chupp, Rob Cooper, Monisha Sharma -U.Michigan Gordon Jones - Hamilton College Fred Wietfeldt - Tulane Scott Dewey, Jeff Nico, Alan Thompson, Tom Gentile, Pieter Mumm - NIST

29 Hartmut Abele, University of Heidelberg 29 neutrons P(v) T P (v) Spin Flipper M2M2 N 0 (v) R A(v) T A (v) M1M1 X Detector z y polarizeranalyzer BxBx ByBy V0V0 ~ ~ ~ ~ +30 kV Neutron beam Into page Detector 1 Detector 2 L Layout Detailed design work needed. Allows proton spectroscopy For adiabatic neutron spin transport Uniform field B

30 Hartmut Abele, University of Heidelberg 30 p e p e N+N+ N-N- Asymmetry: __________ = C P n A F (1-f) + A false N + - N - N + + N - background spin flip efficacy analyzing power neutron polarization C = k(A+B) = 4k ________ | 1+3| | 2 Standard Model The proton Asymmetry = ____ gAgVgAgV _____________ = S(E e ) [1 + a ______ + b ___ + ___. ( A ____ + B ____ + D _______ )] dE e d  e d  E e E n E e J E e E E e E dW p e.p n m e J p e p p e xp JTW-57 k=0.27484

31 Hartmut Abele, University of Heidelberg 31 Motivation: C and PDG 2005  ___ ___  -1.2695±0.0029 a -0.103±0.004 0.2688 A -0.1173±0.0013 0.2403 B +0.983 ±0.004 1.385 C +0.238 ±0.011* 1.430 D -0.0004±0.0006  180.06±0.0029 xxxx C = k(A+B) = 4k ________ | 1+3| | 2 _____________ = S(E e ) [1 + a ______ + b ___ + ___. ( A ____ + B ____ + D _______ )] dE e d  e d  E e E n E e J E e E E e E dW p e.p n m e J p e p p e xp JTW-57 general sys. error * Abele, 2005

32 Hartmut Abele, University of Heidelberg 32 abBA Collaboration

33 Hartmut Abele, University of Heidelberg 33 PERKEO III B. Maerkisch, D. Dubbers, H.A. Virtually no systematic errors - background - edge effect - mirror effect

34 PERKEO III, Correlation A, University HD ~2m, 150mT chopper detector beam stop decay volume neutron beam neutron cloud velocity selector proton or electron detector Dubbers, Märkisch, H.A.

35 Hartmut Abele, University of Heidelberg 35 Particles And Fields matrix for d-u transition: hadron and lepton currents: vector- and axial vector currents: Lagrange function for neutron decay: Weak magnetim formfactor

36 Hartmut Abele, University of Heidelberg 36 The future with the Perkeo III neutron beamobservablemethodphysics pulsed polarised  -asymmetry A , scint. spectr. CKM unitarity weak magnetism pulsed unpol. p-spectrum  e- correlation a p, TOFCKM unitarity pulsed polarised p-asymmetry  -asymmetry B p, TOFmass of right handed W- boson pulsed unpol.  -spectrum , magn. spectr. radiative corrections continous unpol./pol.  -helicity , Mott-scatt. right-handed currents continous unpol. p-helicityp, Mott-scatt.

37 Hartmut Abele, University of Heidelberg 37 Find the Parameters… J.D. Jackson et al.: Phys. Rev. 106 (1957) 517 Surviving in the SM: Slide from T. Soldner

38 Hartmut Abele, University of Heidelberg 38 Find the Parameters… or T violation beyond SM Test for right handed currents Slide from T. Soldner

39 Hartmut Abele, University of Heidelberg 39 Coffee maker


Download ppt "Hartmut Abele, University of Heidelberg 1 4. Correlation D and R measurements in  - decay Electron Neutrino Neutron Spin D Electron Neutron Spin R."

Similar presentations


Ads by Google